
TO BE DELETED - refer to Dublin Documentation
Official Documentation for Dublin

https://docs.onap.org/en/dublin/submodules/policy/parent.git/docs/design/design.html

This page shows how the Policy Design and API Flow to/from the PAP and PDPs works to support Model Driven Control Loops in Dublin.

1 Policy Types
1.1 onap.policies.Monitoring Policy Type
1.2 onap.policies.controlloop.Operational Policy Type

1.2.1 Operational Policy Type Schema for Drools
1.2.3 Operational Policy Type Schema for APEX (El Alto proposal)

1.3 onap.policies.controlloop.Guard Policy Type
1.3.1 onap.policies.controlloop.guard.FrequencyLimiter Policy Type
1.3.2 onap.policies.controlloop.guard.Blacklist Policy Type
1.3.3 onap.policies.controlloop.guard.MinMax Policy Type

1.3.4 onap.policies.controlloop.Coordination Policy Type (STRETCH)
2 PDP Deployment and Registration with PAP
3. Public APIs

3.1 Policy Type Design API for TOSCA Policy Types
3.1.1 Policy Type query
3.1.2 Policy Type Create/Update
3.1.3 Policy Type Delete

3.2 Policy Design API
3.2.1 Policy query
3.2.2 Policy Create/Update

3.2.2.1 Monitoring Policy Create/Update
3.2.2.2.1 Drools Operational Policy Create/Update
3.2.2.2.2 APEX Operational Policy Create/Update

3.2.2.3 Guard Policy Create/Update
3.2.2.4 Policy Lifecycle API - Creating Coordination Policies

3.2.3 Policy Delete
3.3 Policy Administration API

3.3.1 PDP Group Query
3.3.2 PDP Group Deployment
Simple API for CLAMP to deploy one or more policy-id's with optional policy-version.
Simple API for CLAMP to undeploy a policy-id with optional policy-version.
3.3.3 PDP Group Delete
3.3.4 PDP Group State Management
3.3.5 PDP Group Statistics
3.3.6 PDP Group Health Check

3.4 Policy Decision API - Getting Policy Decisions
3.4.1 Decision API Schema
3.4.2 Decision API Queries

4. Policy Framework Internal APIs
4.1 PAP to PDP API

4.1.1 PAP API for PDPs
4.1.2 PDP API for PAPs

4.1.2.1 PDP Update
4.1.2.2 PDP State Change
4.1.2.3 PDP Health Check

4.2 Policy Type Implementations (Native Policies)
4.2.1 Policy Type Implementation Query
4.2.2 Policy Type Implementation Create/Update
4.2.3 Policy Type Implementation Delete

The figure below shows the Artifacts (Blue) in the ONAP Policy Framework, the Activities (Yellow) that manipulate them, and important components (Pink)
that interact with them.

https://docs.onap.org/en/dublin/submodules/policy/parent.git/docs/design/design.html

Please see the page for an introduction to TOSCA policy concepts.TOSCA Policy Primer

TOSCA defines a , the definition of a type of policy that can be applied to a service. PolicyType It also defines a Policy, the definition of an instance of a Poli
 In the Policy Framework, we must handle and manage these TOSCA definitions and tie them to real implementations of policies that can run on .cyType

PDPs.

The diagram above outlines how this is achieved. Each TOSCA must have a corresponding in the Policy Framework. PolicyType PolicyTypeImpl The
TOSCA PolicyType definition can be used to create a TOSCA Policy definition, either directly by the Policy Framework, by CLAMP, or by some other

 Once the artifact exists, it can be used together with the artifact to create a artifact. A artifact is an system. Policy PolicyTypeImpl PolicyImpl PolicyImpl
executable policy implementation that can run on a PDP.

The TOSCA artifact defines the external characteristics of the policy; defining its properties, the types of entities it acts on, and its triggers. A PolicyType P
 artifact is an XACML, Drools, or APEX implementation of that policy definition. and artifacts may be preloaded, olicyTypeImpl PolicyType PolicyTypeImpl

may be loaded manually, or may be created using the Lifecycle API. Alternatively, definitions may be loaded over the Lifecycle API PolicyType
for preloaded artifacts. A TOSCA artifact can be used by clients (such as CLAMP or CLI tools) to create, parse, serialize, andPolicyTypeImpl PolicyType
/or deserialize an actual Policy.

The TOSCA artifact is used internally by the Policy Framework, or is input by CLAMP or other systems. This artifact specifies the values of the Policy
properties for the policy and specifies the specific entities the policy acts on. Policy Design uses the TOSCA artifact and the artifact Policy PolicyTypeImpl
to create an executable artifact. PolicyImpl

1 Policy Types
Policy Type Design manages TOSCA artifacts and their implementationsPolicyType PolicyTypeImpl .

TOSCA PolicyType may ultimately be defined by the modeling team but for now are defined by the Policy Framework project. Various editors and GUIs
are available for creating implementations. However, systematic integration of implementation is outside the scope of the PolicyTypeImpl PolicyTypeImpl
ONAP Dublin release.

The definitions and implementations listed below are preloaded and are always available for use in the Policy Framework.PolicyType

Policy Type Description

onap.policies.Monitoring Overarching model that supports Policy driven DCAE microservice components used in a Control Loops

onap.policies.controlloop.Operational Used to support actor/action operational policies for control loops

onap.policies.controlloop.Guard Control Loop guard policies for policing control loops

onap.policies.controlloop.Coordination Control Loop Coordination policies to assist in coordinating multiple control loops at runtime

1.1 onap.policies.Monitoring Policy Type

This is a base Policy Type that supports Policy driven DCAE microservice components used in a Control Loops. The implementation of this Policy Type is
developed using the XACML PDP to support question/answer Policy Decisions during runtime for the DCAE Policy Handler.

https://wiki.onap.org/display/DW/TOSCA+Policy+Primer

Base Policy Type definition for onap.policies.Monitoring

tosca_definitions_version: tosca_simple_yaml_1_0_0
policy_types:
 - onap.policies.Monitoring:
 derived_from: tosca.policies.Root
 version: 1.0.0
 description: a base policy type for all policies that govern monitoring provision

The implementation of the Policy Type is generic to support definition of TOSCA artifacts in the Policy PolicyTypeImpl onap.policies.Montoring PolicyType
Framework using the Policy Type Design API. Therefore many TOSCA artifacts will use the same implementation with different PolicyType PolicyTypeImpl
property types and towards different targets. This allows dynamically generated DCAE microservice component Policy Types to be created at Design
Time.

DCAE microservice components can generate their own TOSCA using TOSCA-Lab Control Loop guard policies in SDC (Stretch Goal) or can PolicyType
do so manually. See for details on TOSCA-LAB in SDC. For Dublin, the DCAE team is How to generate artefacts for SDC catalog using Tosca Lab Tool
defining the manual steps required to build policy models .Onboarding steps for DCAE MS through SDC/Policy/CLAMP (Dublin)

NOTE: For Dublin, mS Policy Types will be pre-loaded into the SDC platform and be available as a Normative. The policy framework will pre-load support
for those mS Monitoring policy types.

PolicyType onap.policies.monitoring.MyDCAEComponent derived from onap.policies.Monitoring

tosca_definitions_version: tosca_simple_yaml_1_0_0
policy_types:
 - onap.policies.Monitoring:
 derived_from: tosca.policies.Root
 version: 1.0.0
 description: a base policy type for all policies that govern monitoring provision
 - onap.policies.monitoring.MyDCAEComponent:
 derived_from: onap.policies.Monitoring
 version: 1.0.0
 properties:
 mydcaecomponent_policy:
 type: map
 description: The Policy Body I need
 entry_schema:
 type: onap.datatypes.monitoring.mydatatype
data_types:
 - onap.datatypes.monitoring.MyDataType:
 derived_from: tosca.datatypes.Root
 properties:
 my_property_1:
 type: string
 description: A description of this property
 constraints:
 - valid_values:
 - value example 1
 - value example 2

TCA Example - Please note that the official version of this will be located in the SDC repository.

Example TCA DCAE microservice

tosca_definitions_version: tosca_simple_yaml_1_0_0
policy_types:
 onap.policies.Monitoring:
 derived_from: tosca.policies.Root
 description: a base policy type for all policies that governs monitoring provisioning
 onap.policy.monitoring.cdap.tca.hi.lo.app:
 derived_from: onap.policies.Monitoring
 version: 1.0.0
 properties:
 tca_policy:
 type: map
 description: TCA Policy JSON

https://wiki.onap.org/display/DW/How+to+generate+artefacts+for+SDC+catalog+using+Tosca+Lab+Tool
https://wiki.onap.org/pages/viewpage.action?pageId=60883710

 entry_schema:
 type: onap.datatypes.monitoring.tca_policy
data_types:
 onap.datatypes.monitoring.metricsPerEventName:
 derived_from: tosca.datatypes.Root
 properties:
 controlLoopSchemaType:
 type: string
 required: true
 description: Specifies Control Loop Schema Type for the event Name e.g. VNF, VM
 constraints:
 - valid_values:
 - VM
 - VNF
 eventName:
 type: string
 required: true
 description: Event name to which thresholds need to be applied
 policyName:
 type: string
 required: true
 description: TCA Policy Scope Name
 policyScope:
 type: string
 required: true
 description: TCA Policy Scope
 policyVersion:
 type: string
 required: true
 description: TCA Policy Scope Version
 thresholds:
 type: list
 required: true
 description: Thresholds associated with eventName
 entry_schema:
 type: onap.datatypes.monitoring.thresholds
 onap.datatypes.monitoring.tca_policy:
 derived_from: tosca.datatypes.Root
 properties:
 domain:
 type: string
 required: true
 description: Domain name to which TCA needs to be applied
 default: measurementsForVfScaling
 constraints:
 - equal: measurementsForVfScaling
 metricsPerEventName:
 type: list
 required: true
 description: Contains eventName and threshold details that need to be applied to given eventName
 entry_schema:
 type: onap.datatypes.monitoring.metricsPerEventName
 onap.datatypes.monitoring.thresholds:
 derived_from: tosca.datatypes.Root
 properties:
 closedLoopControlName:
 type: string
 required: true
 description: Closed Loop Control Name associated with the threshold
 closedLoopEventStatus:
 type: string
 required: true
 description: Closed Loop Event Status of the threshold
 constraints:
 - valid_values:
 - ONSET
 - ABATED
 direction:
 type: string
 required: true
 description: Direction of the threshold

 constraints:
 - valid_values:
 - LESS
 - LESS_OR_EQUAL
 - GREATER
 - GREATER_OR_EQUAL
 - EQUAL
 fieldPath:
 type: string
 required: true
 description: Json field Path as per CEF message which needs to be analyzed for TCA
 constraints:
 - valid_values:
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].receivedTotalPacketsDelta
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].receivedOctetsDelta
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
receivedUnicastPacketsDelta
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
receivedMulticastPacketsDelta
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
receivedBroadcastPacketsDelta
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
receivedDiscardedPacketsDelta
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].receivedErrorPacketsDelta
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
receivedTotalPacketsAccumulated
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].receivedOctetsAccumulated
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
receivedUnicastPacketsAccumulated
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
receivedMulticastPacketsAccumulated
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
receivedBroadcastPacketsAccumulated
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
receivedDiscardedPacketsAccumulated
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
receivedErrorPacketsAccumulated
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
transmittedTotalPacketsDelta
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].transmittedOctetsDelta
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
transmittedUnicastPacketsDelta
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
transmittedMulticastPacketsDelta
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
transmittedBroadcastPacketsDelta
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
transmittedDiscardedPacketsDelta
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
transmittedErrorPacketsDelta
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
transmittedTotalPacketsAccumulated
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
transmittedOctetsAccumulated
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
transmittedUnicastPacketsAccumulated
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
transmittedMulticastPacketsAccumulated
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
transmittedBroadcastPacketsAccumulated
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
transmittedDiscardedPacketsAccumulated
 - $.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
transmittedErrorPacketsAccumulated
 - $.event.measurementsForVfScalingFields.cpuUsageArray[*].cpuIdle
 - $.event.measurementsForVfScalingFields.cpuUsageArray[*].cpuUsageInterrupt
 - $.event.measurementsForVfScalingFields.cpuUsageArray[*].cpuUsageNice
 - $.event.measurementsForVfScalingFields.cpuUsageArray[*].cpuUsageSoftIrq
 - $.event.measurementsForVfScalingFields.cpuUsageArray[*].cpuUsageSteal
 - $.event.measurementsForVfScalingFields.cpuUsageArray[*].cpuUsageSystem
 - $.event.measurementsForVfScalingFields.cpuUsageArray[*].cpuWait

1.
2.

 - $.event.measurementsForVfScalingFields.cpuUsageArray[*].percentUsage
 - $.event.measurementsForVfScalingFields.meanRequestLatency
 - $.event.measurementsForVfScalingFields.memoryUsageArray[*].memoryBuffered
 - $.event.measurementsForVfScalingFields.memoryUsageArray[*].memoryCached
 - $.event.measurementsForVfScalingFields.memoryUsageArray[*].memoryConfigured
 - $.event.measurementsForVfScalingFields.memoryUsageArray[*].memoryFree
 - $.event.measurementsForVfScalingFields.memoryUsageArray[*].memoryUsed
 - $.event.measurementsForVfScalingFields.additionalMeasurements[*].arrayOfFields[0].value
 severity:
 type: string
 required: true
 description: Threshold Event Severity
 constraints:
 - valid_values:
 - CRITICAL
 - MAJOR
 - MINOR
 - WARNING
 - NORMAL
 thresholdValue:
 type: integer
 required: true
 description: Threshold value for the field Path inside CEF message
 version:
 type: string
 required: true
 description: Version number associated with the threshold

1.2 onap.policies.controlloop.Operational Policy Type

This policy type is used to support actor/action operational policies for control loops. There are two types of implementations for this policy type

Existing Drools implementations that supports runtime Control Loop actions taken on components such as SO/APPC/VFC/SDNC/SDNR
New implementations using APEX to support Control Loops.

For Dublin, this policy type will ONLY be used for the Policy Framework to distinguish the policy type as operational. The contents are still TBD for El Alto.

Base Policy type definition for onap.policies.controlloop.Operational

tosca_definitions_version: tosca_simple_yaml_1_0_0
policy_types:
 onap.policies.controlloop.Operational:
 derived_from: tosca.policies.Root
 version: 1.0.0
 description: Operational Policy for Control Loops

Applications should use the following Content-Type when creating onap.policies.controlloop.Operational policies:

Content-Type: "application/yaml; vnd.onap.operational"

1.2.1 Operational Policy Type Schema for Drools

For Dublin Drools will still support the Casablanca YAML definition of an Operational Policy for Control Loops.

Please use the Casablanca version of the YAML Operational Policy format defined https://git.onap.org/policy/drools-applications/tree/controlloop/common
./policy-yaml/README-v2.0.0.md

1.2.3 Operational Policy Type Schema for APEX (El Alto proposal)

https://git.onap.org/policy/drools-applications/tree/controlloop/common/policy-yaml/README-v2.0.0.md
https://git.onap.org/policy/drools-applications/tree/controlloop/common/policy-yaml/README-v2.0.0.md

The operational Policy Type schema for for APEX will extend the base operational Policy Type schema. This Policy Type allows parameters specific to the
APEX PDP to be specified as a TOSCA policy.

Operational Policy Model Parameter Schema for APEX

tosca_definitions_version: tosca_simple_yaml_1_0_0
Note: The full APEX PolicyType definition will be developed during the Dublin
timeframe of the ONAP project
policy_types:
 onap.policies.controlloop.Operational:
 derived_from: tosca.policies.Root
 version: 1.0.0
 description: Operational Policy for Control Loops

 onap.policies.controloop.operational.Apex:
 derived_from: onap.policies.controlloop.Operational
 version: 1.0.0
 description: Operational Policy for Control Loops using the APEX PDP
 properties:
 # Some of these properties may be redundant in a Kubernetes deployment
 engine_service:
 type: onap.datatypes.policies.controlloop.operational.apex.EngineService
 description: APEX Engine Service Parameters
 inputs:
 type: map
 description: Inputs for handling events coming into the APEX engine
 entry_schema:
 type: onap.datatypes.policies.controlloop.operational.apex.EventHandler
 outputs:
 type: map
 description: Outputs for handling events going out of the APEX engine
 entry_schema:
 type: onap.datatypes.policies.controlloop.operational.apex.EventHandler
 environment:
 type: list
 description: Envioronmental parameters for the APEX engine
 entry_schema:
 type: onap.datatypes.policies.controlloop.operational.apex.Environment

data_types:
 onap.datatypes.policies.controlloop.operational.apex.EngineService:
 derived_from: tosca.datatypes.Root
 properties:
 name:
 type: string
 description: Specifies the engine name
 required: false
 default: "ApexEngineService"
 version:
 type: string
 description: Specifies the engine version in double dotted format
 required: false
 default: "1.0.0"
 id:
 type: int
 description: Specifies the engine id
 required: true
 instance_count:
 type: int
 description: Specifies the number of engine threads that should be run
 required: true
 deployment_port:
 type: int
 description: Specifies the port to connect to for engine administration
 required: false
 default: 1
 policy_model_file_name:
 type: string
 description: The name of the file from which to read the APEX policy model

 required: false
 default: ""
 policy_type_impl:
 type: string
 description: The policy type implementation from which to read the APEX policy model
 required: false
 default: ""
 periodic_event_period:
 type: string
 description: The time interval in milliseconds for the periodic scanning
 event, 0 means "don't scan"
 required: false
 default: 0
 engine:
 type: onap.datatypes.policies.controlloop.operational.apex.engineservice.Engine
 description: The parameters for all engines in the APEX engine service
 required: true

 onap.datatypes.policies.controlloop.operational.apex.EventHandler:
 derived_from: tosca.datatypes.Root
 properties:
 name:
 type: string
 description: Specifies the event handler name, if not specified this is set to
 the key name
 required: false
 carrier_technology:
 type: onap.datatypes.policies.controlloop.operational.apex.CarrierTechnology
 description: Specifies the carrier technology of the event handler (such
 as REST/Web Socket/Kafka)
 required: true
 event_protocol:
 type: onap.datatypes.policies.controlloop.operational.apex.EventProtocol
 description: Specifies the event protocol of events for the event handler
 (such as Yaml/JSON/XML/POJO)
 required: true
 event_name:
 type: string
 description: Specifies the event name for events on this event handler, if
 not specified, the event name is read from or written to the event being
 received or sent
 required: false
 event_name_filter:
 type: string
 description: Specifies a filter as a regular expression, events that do
 not match the filter are dropped, the default is to let all events
 through
 required: false
 synchronous_mode:
 type: bool
 description: Specifies the event handler is syncronous (receive event and
 send response)
 required: false
 default: false
 synchronous_peer:
 type: string
 description: The peer event handler (output for input or input for output)
 of this event handler in synchronous mode, this parameter is mandatory if
 the event handler is in synchronous mode
 required: false
 default: ""
 synchronous_timeout:
 type: int
 description: The timeout in milliseconds for responses to be issued by
 APEX torequests, this parameter is mandatory if the event handler is in
 synchronous mode
 required: false
 default: ""
 requestor_mode:
 type: bool
 description: Specifies the event handler is in requestor mode (send event

 and wait for response mode)
 required: false
 default: false
 requestor_peer:
 type: string
 description: The peer event handler (output for input or input for output)
 of this event handler in requestor mode, this parameter is mandatory if
 the event handler is in requestor mode
 required: false
 default: ""
 requestor_timeout:
 type: int
 description: The timeout in milliseconds for wait for responses to
 requests, this parameter is mandatory if the event handler is in
 requestor mode
 required: false
 default: ""

 onap.datatypes.policies.controlloop.operational.apex.CarrierTechnology:
 derived_from: tosca.datatypes.Root
 properties:
 label:
 type: string
 description: The label (name) of the carrier technology (such as REST,
 Kafka, WebSocket)
 required: true
 plugin_parameter_class_name:
 type: string
 description: The class name of the class that overrides default handling
 of event input or output for this carrier technology, defaults to the supplied
 input or output class
 required: false

 onap.datatypes.policies.controlloop.operational.apex.EventProtocol:
 derived_from: tosca.datatypes.Root
 properties:
 label:
 type: string
 description: The label (name) of the event protocol (such as Yaml,
 JSON, XML, or POJO)
 required: true
 event_protocol_plugin_class:
 type: string
 description: The class name of the class that overrides default handling
 of the event protocol for this carrier technology, defaults to the
 supplied event protocol class
 required: false

 onap.datatypes.policies.controlloop.operational.apex.Environmental:
 derived_from: tosca.datatypes.Root
 properties:
 name:
 type: string
 description: The name of the environment variable
 required: true
 value:
 type: string
 description: The value of the environment variable
 required: true

 onap.datatypes.policies.controlloop.operational.apex.engineservice.Engine:
 derived_from: tosca.datatypes.Root
 properties:
 context:
 type: onap.datatypes.policies.controlloop.operational.apex.engineservice.engine.Context
 description: The properties for handling context in APEX engines,
 defaults to using Java maps for context
 required: false
 executors:
 type: map
 description: The plugins for policy executors used in engines such as

 javascript, MVEL, Jython
 required: true
 entry_schema:
 description: The plugin class path for this policy executor
 type: string

 onap.datatypes.policies.controlloop.operational.apex.engineservice.engine.Context:
 derived_from: tosca.datatypes.Root
 properties:
 distributor:
 type: onap.datatypes.policies.controlloop.operational.apex.Plugin
 description: The plugin to be used for distributing context between
 APEX PDPs at runtime
 required: false
 schemas:
 type: map
 description: The plugins for context schemas available in APEX PDPs
 such as Java and Avro
 required: false
 entry_schema:
 type: onap.datatypes.policies.controlloop.operational.apex.Plugin
 locking:
 type: onap.datatypes.policies.controlloop.operational.apex.plugin
 description: The plugin to be used for locking context in and
 between APEX PDPs at runtime
 required: false
 persistence:
 type: onap.datatypes.policies.controlloop.operational.apex.Plugin
 description: The plugin to be used for persisting context for APEX PDPs
 at runtime
 required: false

 onap.datatypes.policies.controlloop.operational.apex.Plugin:
 derived_from: tosca.datatypes.Root
 properties:
 name:
 type: string
 description: The name of the executor such as Javascript, Jython or MVEL
 required: true
 plugin_class_name:
 type: string
 description: The class path of the plugin class for this executor

1.3 onap.policies.controlloop.Guard Policy Type

This policy type is the the type definition for Control Loop guard policies for frequency limiting, blacklisting and min/max guards to help protect runtime
Control Loop Actions from doing harm to the network. This policy type is developed using the XACML PDP to support question/answer Policy Decisions
during runtime for the Drools and APEX onap.controlloop.Operational policy type implementations.

The base schema is defined as below:

Base Policy type definition for onap.policies.controlloop.Guard

tosca_definitions_version: tosca_simple_yaml_1_0_0
policy_types:
 - onap.policies.controlloop.Guard:
 derived_from: tosca.policies.Root
 version: 1.0.0
 description: Guard Policies for Control Loop Operational Policies

As with policy type, the implementation of the Policy Type is generic to support onap.policies.Monitoring PolicyTypeImpl onap.policies.controlloop.Guard
definition of TOSCA artifacts in the Policy Framework using the Policy Type Design API.PolicyType

For Dublin, only the following derived below are preloaded in the Policy Framework. However, the creation of policies will still Policy Type definitions
support the payload from Casablanca.

Casablanca Guard Payload

ContentType: "application/json; vnd.onap.guard"
Accepts: "application/json"

#
Request BODY
#
{
 "policy-id" : "guard.frequency.scaleout",
 "contents" : {
 "actor": "SO",
 "recipe": "scaleOut",
 "targets": ".*",
 "clname": "ControlLoop-vDNS-6f37f56d-a87d-4b85-b6a9-cc953cf779b3",
 "limit": "1",
 "timeWindow": "10",
 "timeUnits": "minute",
 "guardActiveStart": "00:00:01-05:00",
 "guardActiveEnd": "23:59:59-05:00"
 }
}

#
Request RESPONSE
#
{
 "guard.frequency.scaleout": {
 "type": "onap.policies.controlloop.guard.FrequencyLimiter",
 "version": "1.0.0",
 "metadata": {
 "policy-id": "guard.frequency.scaleout",
 "policy-version": 1
 }
 }
}

1.3.1 onap.policies.controlloop.guard.FrequencyLimiter Policy Type

This is WIP for El Alto for the proposed policy type.

Policy Typefor Frequency Limiter Guard Policy

tosca_definitions_version: tosca_simple_yaml_1_0_0
policy_types:
 - onap.policies.controlloop.Guard:
 derived_from: tosca.policies.Root
 version: 1.0.0
 description: Guard Policies for Control Loop Operational Policies
 - onap.policies.controlloop.guard.FrequencyLimiter:
 derived_from: onap.policies.controlloop.Guard
 version: 1.0.0
 description: Supports limiting the frequency of actions being taken by a Actor.
 properties:
 frequency_policy:
 type: map
 description:
 entry_schema:
 type: onap.datatypes.guard.FrequencyLimiter
data_types:
 - onap.datatypes.guard.FrequencyLimiter:
 derived_from: tosca.datatypes.Root
 properties:
 actor:
 type: string
 description: Specifies the Actor
 required: true
 recipe:
 type: string
 description: Specified the Recipe
 required: true
 time_window:
 type: scalar-unit.time
 description: The time window to count the actions against.
 required: true
 limit:
 type: integer
 description: The limit
 required: true
 constraints:
 - greater_than: 0
 time_range:
 type: tosca.datatypes.TimeInterval
 description: An optional range of time during the day the frequency is valid for.
 required: false
 controlLoopName:
 type: string
 description: An optional specific control loop to apply this guard to.
 required: false
 target:
 type: string
 description: An optional specific VNF to apply this guard to.
 required: false

1.3.2 onap.policies.controlloop.guard.Blacklist Policy Type

Policy Type for Blacklist Guard Policies

tosca_definitions_version: tosca_simple_yaml_1_0_0
policy_types:
 - onap.policies.controlloop.Guard:
 derived_from: tosca.policies.Root
 version: 1.0.0
 description: Guard Policies for Control Loop Operational Policies
 - onap.policies.controlloop.guard.Blacklist:
 derived_from: onap.policies.controlloop.Guard
 version: 1.0.0
 description: Supports blacklist of VNF's from performing control loop actions on.
 properties:
 blacklist_policy:
 type: map
 description:
 entry_schema:
 type: onap.datatypes.guard.Blacklist
data_types:
 - onap.datatypes.guard.Blacklist:
 derived_from: tosca.datatypes.Root
 properties:
 actor:
 type: string
 description: Specifies the Actor
 required: true
 recipe:
 type: string
 description: Specified the Recipe
 required: true
 time_range:
 type: tosca.datatypes.TimeInterval
 description: An optional range of time during the day the blacklist is valid for.
 required: false
 controlLoopName:
 type: string
 description: An optional specific control loop to apply this guard to.
 required: false
 blacklist:
 type: list
 description: List of VNF's
 required: true

1.3.3 onap.policies.controlloop.guard.MinMax Policy Type

Policy Type for Min/Max VF Module Policies

policy_types:
 - onap.policies.controlloop.Guard:
 derived_from: tosca.policies.Root
 version: 1.0.0
 description: Guard Policies for Control Loop Operational Policies
 - onap.policies.controlloop.guard.MinMax:
 derived_from: onap.policies.controlloop.Guard
 version: 1.0.0
 description: Supports Min/Max number of VF Modules
 properties:
 minmax_policy:
 type: map
 description:
 entry_schema:
 type: onap.datatypes.guard.MinMax
data_types:
 - onap.datatypes.guard.MinMax:
 derived_from: tosca.datatypes.Root
 properties:
 actor:
 type: string
 description: Specifies the Actor
 required: true
 recipe:
 type: string
 description: Specified the Recipe
 required: true
 time_range:
 type: tosca.datatypes.TimeInterval
 description: An optional range of time during the day the Min/Max limit is valid for.
 required: false
 controlLoopName:
 type: string
 description: An optional specific control loop to apply this guard to.
 required: false
 min_vf_module_instances:
 type: integer
 required: true
 description: The minimum instances of this VF-Module

 max_vf_module_instances:
 type: integer
 required: false
 description: The maximum instances of this VF-Module

1.3.4 onap.policies.controlloop.Coordination Policy Type (STRETCH)

This policy type defines policies to assist in coordinating multiple control loops during runtime. This policy type is developed Control Loop Coordination
using XACML PDP to support question/answer policy decisions at runtime for the onap.policies.controlloop.operational policy types.

2 PDP Deployment and Registration with PAP
The unit of execution and scaling in the Policy Framework is a entity. A entity runs on a PDP. As is explained above a PolicyImpl PolicyImpl PolicyImpl
entity is a implementation parameterized with a TOSCA .PolicyTypeImpl Policy

In order to achieve horizontal scalability, we group the PDPs running instances of a given entity logically together into a . The PolicyImpl PDPSubGroup
number of PDPs in a can then be scaled up and down using Kubernetes. In other words, all PDPs in a subgroup run the same , PDPSubGroup PolicyImpl
that is the same policy template implementation (in XACML, Drools, or APEX) with the same parameters.

The figure above shows the layout of and entities. The figure shows examples of PDP groups for Control Loop and Monitoring PDPGroup PDPSubGroup
policies on the right.

The health of PDPs is monitored by the PAP in order to alert operations teams managing policy. The PAP manages the life cycle of policies running on
PDPs.

The table below shows the methods in which entities can be deployed to PDP SubgroupsPolicyImpl

Method Description Advantages Disadvantages

Cold
Deployme
nt

The and TOSCA are PolicyImpl (PolicyTypeImpl Policy)
predeployed on the PDP. The PDP is fully configured and
ready to execute when started.

PDPs register with the PAP when they start, providing the Poli
 they have been predeployed with.cyImpl

No run time configuration required and
run time administration is simple.

Very restrictive, no run time configuration of
PDPs is possible.

Warm
Deployme
nt

The entity is predeployed on the PDP. A PolicyTypeImpl
TOSCA may be loaded at startup. The PDP may be Policy
configured or reconfigured with a new or updated TOSCA Poli

 at run time.cy

PDPs register with the PAP when they start, providing the Poli
 they have been predeployed with if any. The PAP may cyImpl

update the TOSCA on a PDP at any time after Policy
registration.

The configuration, parameters, and
PDP group of PDPs may be changed
at run time by loading or updating a TO
SCA Policy into the PDP.

Lifecycle management of TOSCA Policy
entities is supported, allowing features
such as Safe Mode and PolicyImpl Poli

Impl retirement.cy

Administration and management is required. The
configuration and life cycle of the TOSCA policie
s can change at run time and must be
administered and managed.

Hot
Deployme
nt

The and TOSCA are PolicyImpl (PolicyTypeImpl Policy)
deployed at run time. The and PolicyImpl (PolicyTypeImpl
TOSCA may be loaded at startup. The PDP may be Policy)
configured or reconfigured with a new or updated PolicyTypeI

 and/or TOSCA at run time.mpl Policy

PDPs register with the PAP when they start, providing the Poli
 they have been predeployed with if any. The PAP may cyImpl

update the TOSCA and on a PDP at Policy PolicyTypeImpl
any time after registration.

The policy logic, rules, configuration,
parameters, and PDP group of
PDPs may be changed at run time by
loading or updating a TOSCA Policy
and into the PDP.PolicyTypeImpl

Lifecycle management of TOSCA Policy
entities and entites is PolicyTypeImpl
supported, allowing features such as Po

 Safe Mode and Impl licyImpl Policy
retirement.

Administration and management is more
complex. The itself and its PolicyImpl
configuration and life cycle as well as the life
cycle of the TOSCA policies can change at run
time and must be administered and managed.

3. Public APIs
The Policy Framework supports the APIs documented in the subsections below. The APIs in this section are supported for use by external components.

3.1 Policy Type Design API for TOSCA Policy Types

The purpose of this API is to support CRUD of TOSCA entities. This API is provided by the component of the Policy PolicyType PolicyDevelopment
Framework, see architecture.The ONAP Policy Framework

The API allows applications to create, update, delete, and query entities so that they become available for use in ONAP by applications such PolicyType
as CLAMP Some Policy Type entities are preloaded in the Policy Framework. The TOSCA fields below are valid on API calls:.

Field GET POST DELETE Comment

(name) M M M The definition of the reference to the Policy Type, GET allows ranges to be specified

version O M C GET allows ranges to be specified, must be specified if more than one version of the Policy Type exists

description R O N/A Desciption of the Policy Type

derived_from R C N/A Must be specified when a Policy Type is derived from another Policy Type such as in the case of derived Monitoring
Policy Types

metadata R O N/A Metadata for the Policy Type

properties R M N/A This field holds the specification of the specific Policy Type in ONAP

targets R O N/A A list of node types and/or group types to which the Policy Type can be applied

triggers R O N/A Specification of policy triggers, not currently supported in ONAP

Note: On this and subsequent tables, use the following legend: M-Mandatory, O-Optional, R-Read-only, C-Conditional. Conditional means the field is
mandatory when some other field is present.
Note: Preloaded policy types may only be queried over this API, modification or deletion of preloaded policy type implementations is disabled.
Note: Policy types that are in use (referenced by defined Policies) may not be deleted
Note: The group types of targets in TOSCA are groups of TOSCA nodes, not PDP groups; the concept in TOSCA is equivalent to the Policy target
Enforcement Point (PEP) concept

3.1.1 Policy Type query

The API allows applications (such as CLAMP and Integration) to query the entities that are available for creation using a GET operation.PolicyType Policy

https:{url}:{port}/policy/api/v1/policytypes GET

https://wiki.onap.org/display/DW/The+ONAP+Policy+Framework

Policy Type Query - When system comes up before any mS are onboarded

policy_types:
 - onap.policies.Monitoring:
 version: 1.0.0
 description: A base policy type for all policies that govern monitoring provision
 derived_from: tosca.policies.Root
 properties:
 # Omitted for brevity, see Section 1

 - onap.policies.controlloop.Operational:
 version: 1.0.0
 description: Operational Policy for Control Loops
 derived_from: tosca.policies.Root
 properties:
 # Omitted for brevity, see Section 1

 - onap.policies.controloop.operational.Drools:
 version: 1.0.0
 description: Operational Policy for Control Loops using the Drools PDP
 derived_from: onap.policies.controlloop.Operational
 properties:
 # Omitted for brevity, see Section 1

 - onap.policies.controloop.operational.Apex:
 version: 1.0.0
 description: Operational Policy for Control Loops using the APEX PDP
 derived_from: onap.policies.controlloop.Operational
 properties:
 # Omitted for brevity, see Section 1

 - onap.policies.controlloop.Guard:
 version: 1.0.0
 description: Operational Policy for Control Loops
 derived_from: tosca.policies.Root
 properties:
 # Omitted for brevity, see Section 1

 - onap.policies.controlloop.guard.FrequencyLimiter:
 version: 1.0.0
 description: Supports limiting the frequency of actions being taken by a Actor.
 derived_from: onap.policies.controlloop.Guard
 properties:
 # Omitted for brevity, see Section 1

 - onap.policies.controlloop.guard.Blacklist:
 version: 1.0.0
 description: Supports blacklist of VNF's from performing control loop actions on.
 derived_from: onap.policies.controlloop.Guard
 properties:
 # Omitted for brevity, see Section 1

 - onap.policies.controlloop.guard.MinMax:
 version: 1.0.0
 description: Supports Min/Max number of VF Modules
 derived_from: onap.policies.controlloop.Guard
 properties:
 # Omitted for brevity, see Section 1

 - onap.policies.controlloop.coordination.TBD: (STRETCH GOALS)
 version: 1.0.0
 description: Control Loop Coordination policy types
 derived_from: onap.policies.controlloop.Coordination
 properties:
 # Omitted for brevity, see Section 1

data_types:
 # Any bespoke data types referenced by policy type definitions

The table below shows some more examples of GET operations

Example Description

https:{url}:{port}/policy/api/v1/policytypes Get all Policy Type entities in the system

https:{url}:{port}/policy/api/v1/policytypes/{policy type id}

eg.
onap.policies.monitoring.cdap.tca.hi.lo.apphttps:{url}:{port}/policy/api/v1/policytypes/

Get a specific policy type and all the available versions.

https:{url}:{port}/policy/api/v1/policytypes/{policy type id}/versions/{version id}

eg.
onap.policies.monitoring.cdap.tca.hi.lo.apphttps:{url}:{port}/policy/api/v1/policytypes/

/versions/1.0.0

Get the specific Policy Type with the specified name and
version

3.1.2 Policy Type Create/Update

The API allows applications and users (such as a DCAE microservice component developer) to create or update a Policy Type using a POST operation.
This API allows new Policy Types to be created or existing Policy Types to be modified. POST operations with a new Policy Type name or a new version
of an existing Policy Type name are used to create a new Policy Type. POST operations with an existing Policy Type name and version are used to
update an existing Policy Type. Many Policy Types can be created or updated in a single POST operation by specifying more than one Policy Type on the
TOSCA list.policy_types

For example, the POST operation below with the TOSCA body below is used to create a new Policy type for a DCAE microservice.

https:{url}:{port}/policy/api/v1/policytypes POST

Create a new Policy Type for a DCAE microservice

policy_types:
 - onap.policies.monitoring.cdap.tca.hi.lo.app:
 version: 1.0.0
 derived_from: onap.policies.Monitoring
 description: A DCAE TCA high/low policy type
 properties:
 tca_policy:
 type: map
 description: TCA Policy JSON
 default:'{<JSON omitted for brevity>}'
 entry_schema:
 type: onap.datatypes.monitoring.tca_policy

data_types:
 <omitted for brevity>

Following creation of a DCAE TCA policy type operation, the GET call for Monitoring policies will list the new policy type.

https:{url}:{port}/ api/v1/policytypes GETpolicy/

Policy Type Query after DCAE TCA mS Policy Type is created

policy_types:
 - onap.policies.Monitoring:
 version: 1.0.0
 derived_from: tosca.policies.Root
 description: A base policy type for all policies that govern monitoring provision

 - onap.policies.monitoring.cdap.tca.hi.lo.app:
 version: 1.0.0
 derived_from: onap.policies.Monitoring
 description: A DCAE TCA high/low policy type

 - onap.policies.controlloop.Operational:
 version: 1.0.0
 description: Operational Policy for Control Loops
 derived_from: tosca.policies.Root

 - onap.policies.controloop.operational.Drools:
 version: 1.0.0
 description: Operational Policy for Control Loops using the Drools PDP
 derived_from: onap.policies.controlloop.Operational

 - onap.policies.controloop.operational.Apex:
 version: 1.0.0
 description: Operational Policy for Control Loops using the APEX PDP
 derived_from: onap.policies.controlloop.Operational

 - onap.policies.controlloop.Guard:
 version: 1.0.0
 description: Operational Policy for Control Loops
 derived_from: tosca.policies.Root

 - onap.policies.controlloop.guard.FrequencyLimiter:
 version: 1.0.0
 description: Supports limiting the frequency of actions being taken by a Actor.
 derived_from: onap.policies.controlloop.Guard

 - onap.policies.controlloop.guard.Blacklist:
 version: 1.0.0
 description: Supports blacklist of VNF's from performing control loop actions on.
 derived_from: onap.policies.controlloop.Guard

 - onap.policies.controlloop.guard.MinMax:
 version: 1.0.0
 description: Supports Min/Max number of VF Modules
 derived_from: onap.policies.controlloop.Guard

 - onap.policies.controlloop.coordination.TBD: (STRETCH GOALS)
 version: 1.0.0
 description: Control Loop Coordination policy types
 derived_from: onap.policies.controlloop.Coordination

Now the Policy Type is available to CLAMP for creating concrete policies. See the Yaml contribution on the onap.policies.Monitoring.cdap.tca.hi.lo.app Mod
 page for a full listing of the DCAE TCA policy type used in the example above.el driven Control Loop Design

3.1.3 Policy Type Delete

The API also allows Policy Types to be deleted with a DELETE operation. The format of the delete operation is as below:

onap.policies.monitoring.cdap.tca.hi.lo.app/versions/1.0.0 DELETEhttps:{url}:{port}/policy/api/v1/policytypes/

Note: Predefined policy types cannot be deleted
Note: Policy types that are in use (Parameterized by a TOSCA Policy) may not be deleted, the parameterizing TOSCA policies must be deleted first
Note: The parameter may be omitted on the DELETE operation if there is only one version of the policy type in the systemversion

3.2 Policy Design API

https://wiki.onap.org/display/DW/Model+driven+Control+Loop+Design
https://wiki.onap.org/display/DW/Model+driven+Control+Loop+Design

The purpose of this API is to support CRUD of TOSCA entities from TOSCA compliant definitions. TOSCA entities become the Policy PolicyType Policy
parameters for entities, producing entities that can run on PDPs. This API is provided by the component of PolicyTypeImpl PolicyImpl PolicyDevelopment
the Policy Framework, see architecture.The ONAP Policy Framework

This API allows applications (such as CLAMP and Integration) to create, update, delete, and query entities The below are valid on Policy . TOSCA fields
API calls:

Field GET POST DELETE Comment

(name) M M M The definition of the reference to the Policy, GET allows ranges to be specified

type O M O The Policy Type of the policy, see section 3.1

description R O O

metadata R O N/A

properties R M N/A This field holds the specification of the specific Policy in ONAP

targets R O N/A A list of nodes and/or groups to which the Policy can be applied

Note: Policies that are deployed (used on deployed entities) may not be deletedPolicyImpl
Note: This API is NOT used by DCAE for a decision on what policy the DCAE PolicyHandler should retrieve and enforce
Note: The groups of targets in TOSCA are groups of TOSCA nodes, not PDP groups; the concept in TOSCA is equivalent to the Policy Enforcement target
Point (PEP) concept

YAML is used for illustrative purposes in the examples in this section. JSON (application/json) will be used as the content type in the implementation of this
API.

3.2.1 Policy query

The API allows applications (such as CLAMP and Integration) to query the entities that are available for deployment using a GET operation.Policy

Note: This operation simply returns TOSCA policies that are defined in the Policy Framework, it does NOT make a decision.

The table below shows some more examples of GET operations

Example Description

https:{url}:{port}/ api/v1/policytypes/policy/ {policy type id}/versions/{versions}/policies

eg.
https:{url}:{port}/ api/v1/policytypes/policy/ onap.policies.monitoring.cdap.tca.hi.lo.app/versions/1.0.0
/policies

Get all Policies for a specific Policy Type
and version

https://{url}:{port}/ api/v1/policytypes/{policy type id}/versions/{version}/policies/{policy name}policy/
/versions/{version}

eg.
onap.policies.monitoring.cdap.tca.hi.lo.app/versions/1.0.0https:{url}:{port}/ api/v1/policytypes/policy/

/policies/onap.scaleout.tca/versions/1.0.0 GET

Gets a specific Policy version

onap.policies.monitoring.cdap.tca.hi.lo.app/versions/1.0.0https:{url}:{port}/ api/v1/policytypes/policy/
/policies/onap.scaleout.tca/versions/latest GET

Returns the latest version of a Policy

onap.policies.monitoring.cdap.tca.hi.lo.app/versions/1.0.0https:{url}:{port}/ api/v1/policytypes/policy/
/policies/onap.scaleout.tca/deployed GET

Returns the version of the Policy that has
been deployed on one or more PDP
groups.

https://{url}:{port}/ api/v1/policytypes/onap.policies.monitoring.cdap.tca.hi.lo.app/versions/1.2.3policy/
/policies/CL-LBAL-LOW-TRAFFIC-SIG-FB480F95-A453-6F24-B767-FD703241AB1A/versions/1.0.2 GET

Returns a specific version of a monitoring
policy

3.2.2 Policy Create/Update

The API allows applications and users (such as CLAMP and Integration) to create or update a Policy using a POST operation. This API allows new
Policies to be created or existing Policies to be modified. POST operations with a new Policy name are used to create a new Policy. POST operations with
an existing Policy name are used to update an existing Policy. Many Policies can be created or updated in a single POST operation by specifying more
than one Policy on the TOSCA list.policies

3.2.2.1 Monitoring Policy Create/Update

While designing a control loop using CLAMP, a Control Loop Designer uses the Policy Type for a specific DCAE mS component (See Section 3.1.1) to
create a specific Policy. CLAMP then uses this API operation to submit the Policy to the Policy Framework.

For example, the POST operation below with the TOSCA body new scaleout Policy for the below is used to create a onap.policies.monitoring.cdap.tca.hi.lo.
 microservice. The name of the policy "onap.scaleout.tca" is up to the user to determine themselves.app

https://wiki.onap.org/display/DW/The+ONAP+Policy+Framework

 POSTonap.policies.Monitoring.cdap.tca.hi.lo.app/versions/1.0.0/policieshttps:{url}:{port}/ api/v1/policytypes/policy/

TOSCA Body of a new TCA High/Low Policy

https:{url}:{port}/policy/api/v1/policytypes/onap.policies.monitoring.cdap.tca.hi.lo.app/versions/1.0.0
/policies POST
Content-Type: application/yaml
Accept: application/yaml

#Request Body
policies:
 -
 onap.scaleout.tca:
 type: onap.policies.monitoring.cdap.tca.hi.lo.app
 version: 1.0.0
 metadata:
 policy-id: onap.scaleout.tca # SHOULD MATCH THE TOSCA policy-name field above. DCAE needs this -
convenience.
 description: The scaleout policy for vDNS # GOOD FOR CLAMP GUI
 properties:
 domain: measurementsForVfScaling
 metricsPerEventName:
 -
 eventName: vLoadBalancer
 controlLoopSchemaType: VNF
 policyScope: "type=configuration"
 policyName: "onap.scaleout.tca"
 policyVersion: "v0.0.1"
 thresholds:
 - closedLoopControlName: "CL-LBAL-LOW-TRAFFIC-SIG-FB480F95-A453-6F24-B767-FD703241AB1A"
 closedLoopEventStatus: ONSET
 version: "1.0.2"
 fieldPath: "$.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
receivedBroadcastPacketsAccumulated"
 thresholdValue: 500
 direction: LESS_OR_EQUAL
 severity: MAJOR
 -
 closedLoopControlName: "CL-LBAL-LOW-TRAFFIC-SIG-0C5920A6-B564-8035-C878-0E814352BC2B"
 closedLoopEventStatus: ONSET
 version: "1.0.2"
 fieldPath: "$.event.measurementsForVfScalingFields.vNicPerformanceArray[*].
receivedBroadcastPacketsAccumulated"
 thresholdValue: 5000
 direction: GREATER_OR_EQUAL
 severity: CRITICAL

#Response Body
policies:
 - onap.scaleout.tca:
 type: onap.policies.monitoring.cdap.tca.hi.lo.app
 version: 1.0.0
 metadata:
 #

 # version is managed by Policy Lifecycle and returned
 # back to the caller.
 #
 policy-version: 1
 #
 # These were passed in, and should not be changed. Will
 # be passed back.
 #
 policy-id: onap.scaleout.tca
 properties:
 domain: measurementsForVfScaling
 metricsPerEventName:
 -
 eventName: vLoadBalancer
 controlLoopSchemaType: VNF
 policyScope: "type=configuration"
 <OMITTED FOR BREVITY>

Given a return code of success and a "metadata" section that indicates versioning information. The "metadata" section conforms exactly to how SDC
implements lifecycle management versioning for first class normatives in the TOSCA Models. The policy platform will implement lifecycle identically to SDC
to ensure conformity for policy . The new metadata fields return versioning details.creation

The new policy will be listed and will have a "metadata" section as shown below:following

onap.policies.monitoring.cdap.tca.hi.lo.app/versions/1.0.0/policies GEThttps:{url}:{port}/ api/v1/policytypes/policy/

Policy with Metadata section for lifecycle management

policies:
 - onap.scaleout.tca:
 type: onap.policies.monitoring.cdap.tca.hi.lo.app
 version: 1.0.0
 metadata:
 policy-id: onap.scaleout.tca

 policy-version: 1
 - my.other.policy:
 type: onap.policies.monitoring.cdap.tca.hi.lo.app
 version: 1.0.0
 metadata:
 invariantUUID: 20ad46cc-6b16-4404-9895-93d2baaa8d25
 UUID: 4f715117-08b9-4221-9d63-f3fa86919742
 version: 5
 name: my.other.policy
 scope: foo=bar;field2=value2
 description: The policy for some other use case
 - yet.another.policy:
 type: onap.policies.monitoring.cdap.tca.hi.lo.app
 version: 1.0.0
 metadata:
 invariantUUID: 20ad46cc-6b16-4404-9895-93d2baaa8d25
 UUID: 4f715117-08b9-4221-9d63-f3fa86919742
 version: 3
 name: yet.another.policy
 scope: foo=bar;
 description: The policy for yet another use case

The contents of the new policy can be retrieved using the ID:

onap.policies.monitoring.cdap.tca.hi.lo.app/versions/1.0.0/policies/onap.scaleout.tca GEThttps:{url}:{port}/ api/v1/policytypes/policy/

Query on a new TCA High/Low Policy

policies:
 -
 onap.scaleout.tca:
 type: onap.policies.monitoring.cdap.tca.hi.lo.app
 version: 1.0.0
 metadata:
 invariantUUID: 20ad46cc-6b16-4404-9895-93d2baaa8d25
 UUID: 4f715117-08b9-4221-9d63-f3fa86919742
 version: 1
 name: onap.scaleout.tca
 scope: foo=bar;
 description: The scaleout policy for vDNS
 properties:
 domain: measurementsForVfScaling
 <OMMITTED FOR BREVITY>

3.2.2.2 Operational Policy Create/Update

While designing an operational policy, the designer uses the Policy Type for the operational policy (See Section 3.1.1) to create a specific Policy and
submits the Policy to the Policy Framework.

This URL will be fixed for CLAMP in Dublin and the payload will match updated version of Casablanca YAML that supports VFModules.

https:{url}:{port}/policy/api/v1/policytypes/onap.policies.controloop.operational/versions/1.0.0/policies POST

Content-Type: application/yaml; legacy-version

FUTURE: Content-Type: application/yaml; tosca

NOTE: The controlLoopName will be assumed to be the policy-id

Create an Operational Policy

tosca_definitions_version: tosca_simple_yaml_1_0_0
topology_template:
 policies:
 -
 operational.scaleout:
 type: onap.policies.controlloop.Operational
 version: 1.0.0
 metadata:
 policy-id: operational.scaleout
 properties:
 controlLoop:
 version: 2.0.0
 controlLoopName: ControlLoop-vDNS-6f37f56d-a87d-4b85-b6a9-cc953cf779b3
 trigger_policy: unique-policy-id-1-scale-up
 timeout: 1200
 abatement: false
 policies:
 - id: unique-policy-id-1-scale-up
 name: Create a new VF Module
 description:
 actor: SO
 recipe: VF Module Create
 target:
 type: VNF
 payload:
 requestParameters: '{"usePreload":true,"userParams":[]}'
 configurationParameters: '[{"ip-addr":"$.vf-module-topology.vf-module-parameters.param[9]","
oam-ip-addr":"$.vf-module-topology.vf-module-parameters.param[16]","enabled":"$.vf-module-topology.vf-module-
parameters.param[23]"}]'
 retry: 0
 timeout: 1200
 success: final_success
 failure: final_failure
 failure_timeout: final_failure_timeout
 failure_retries: final_failure_retries
 failure_exception: final_failure_exception
 failure_guard: final_failure_guard

Response from creating Operational Policy

tosca_definitions_version: tosca_simple_yaml_1_0_0
topology_template:
 policies:
 -
 operational.scaleout:
 type: onap.policies.controlloop.Operational
 version: 1.0.0
 metadata:
 policy-id: operational.scaleout
 policy-version: 1
 properties:
 controlLoop:
 version: 2.0.0
 controlLoopName: ControlLoop-vDNS-6f37f56d-a87d-4b85-b6a9-cc953cf779b3
 trigger_policy: unique-policy-id-1-scale-up
 timeout: 1200
 abatement: false
 policies:
 - id: unique-policy-id-1-scale-up
 name: Create a new VF Module
 description:
 actor: SO
 recipe: VF Module Create
 target:
 type: VNF
 payload:
 requestParameters: '{"usePreload":true,"userParams":[]}'
 configurationParameters: '[{"ip-addr":"$.vf-module-topology.vf-module-parameters.param[9]","
oam-ip-addr":"$.vf-module-topology.vf-module-parameters.param[16]","enabled":"$.vf-module-topology.vf-module-
parameters.param[23]"}]'
 retry: 0
 timeout: 1200
 success: final_success
 failure: final_failure
 failure_timeout: final_failure_timeout
 failure_retries: final_failure_retries
 failure_exception: final_failure_exception
 failure_guard: final_failure_guard

3.2.2.2.1 Drools Operational Policy Create/Update

TBD Jorge Hernandez

3.2.2.2.2 APEX Operational Policy Create/Update

The POST operation below with the TOSCA body below is used to create a new Sample Domain test polict for the APEX Sample Domain operational
policy type.

https:{url}:{port}/policy/api/v1/policytypes/onap.policies.controloop.operational.apex/versions/1.0.0/policies POST

https://wiki.onap.org/display/~jhh

Create an APEX Policy for a Sample Domain

policies:
 - onap.policy.operational.apex.sampledomain.Test:
 type: onap.policies.controloop.operational.Apex
 properties:
 engine_service:
 name: "MyApexEngine"
 version: "0.0.1"
 id: 45
 instance_count: 4
 deployment_port: 12561
 policy_type_impl: "onap.policies.controlloop.operational.apex.sampledomain.Impl"
 engine:
 executors:
 JAVASCRIPT: "org.onap.policy.apex.plugins.executor.javascript.JavascriptExecutorParameters"

 inputs:
 first_consumer:
 carrier_technology:
 label: "RESTCLIENT",
 plugin_parameter_class_name: "org.onap.policy.apex.plugins.event.carrier.restclient.
RestClientCarrierTechnologyParameters",
 parameters:
 url: "https://localhost:32801/EventGenerator/GetEvents"
 event_protocol:
 label: "JSON"

 outputs:
 first_producer:
 carrier_technology:
 label: "RESTCLIENT",
 plugin_parameter_class_name: "org.onap.policy.apex.plugins.event.carrier.restclient.
RestClientCarrierTechnologyParameters",
 parameters:
 url: "https://localhost:32801/EventGenerator/PostEvent"
 event_protocol:
 label: "JSON"

3.2.2.3 Guard Policy Create/Update

TBD Similar to Operational PoliciesPamela Dragosh

3.2.2.4 Policy Lifecycle API - Creating Coordination Policies

TBD Similar to Operational Policies, stretch for Dublin

3.2.3 Policy Delete

The API also allows Policies to be deleted with a DELETE operation. The format of the delete operation is as below:

Example Description

onap.policies.monitoring.cdap.https:{url}:{port}/ api/v1/policytypes/policy/
tca.hi.lo.app/versions/1.0.0/policies/onap.scaleout.tca DELETE

Deletes a Policy - all versions will be deleted.

NOTE: The API call will fail if the policy has been deployed in one or more
PDP Group. They must be undeployed first from all PDP Groups.

3.3 Policy Administration API

The purpose of this API is to support CRUD of PDP groups and subgroups and to support the deployment and life cycles of entities (TOSCA PolicyImpl Poli
and entities) on PDP sub groups and PDPs. See Section 2 for details on policy deployment on PDP groups and subgroups. This API is cy PolicyTypeImpl

provided by the component (PAP) of the Policy Framework, see architecture.PolicyAdministration The ONAP Policy Framework

PDP groups and subgroups may be prefedined in the system. Predefined groups and subgroups may not be modified or deleted over this API. However,
the policies running on predefined groups or subgroups as well as the instance counts and properties may be modified.

https://wiki.onap.org/display/~pdragosh
https://wiki.onap.org/display/DW/The+ONAP+Policy+Framework

A PDP may be preconfigured with its PDP group, PDP subgroup, and policies. The PDP sends this information to the PAP when it starts. If the PDP group,
subgroup, or any policy is unknown to the PAP, the PAP locks the PDP in state PASSIVE.

The fields below are valid on API calls:

Field GET POST DELETE Comment

name M M M The name of the PDP group

version O M C The version of the PDP group

state R N/A N/A The administrative state of the PDP group: PASSIVE, SAFE, TEST, or ACTIVE

description R O N/A The PDP group description

properties R O N/A Specific properties for a PDP group

pdp_subgroups R M N/A A list of PDP subgroups for a PDP group

pdp_type R M N/A The PDP type of this PDP subgroup, currently xacml, drools, or apex

supported_policy_types R N/A N/A A list of the policy types supported by the PDPs in this PDP subgroup

policies R M N/A The list of policies running on the PDPs in this PDP subgroup

(name) R M N/A The name of a TOSCA policy running in this PDP subgroup

policy_type R N/A N/A The TOSCA policy type of the policy

policy_type_version R N/A N/A The version of the TOSCA policy type of the policy

policy_type_impl R C N/A The policy type implementation (XACML, Drools Rules, or APEX Model) that implements the
policy

instance_count R N/A N/A The number of PDP instances running in a PDP subgroup

min_instance_count O N/A N/A The minumum number of PDP instances to run in a PDP subgroup

properties O N/A N/A Deployment configuration or other properties for the PDP subgroup

deployment_info R N/A N/A Information on the deployment for a PDP subgroup

instances R N/A N/A A list of PDP instances running in a PDP subgroup

instance R N/A N/A The instance ID of a PDP running in a Kuberenetes Pod

state R N/A N/A The administrative state of the PDP: PASSIVE, SAFE, TEST, or ACTIVE

healthy R N/A N/A The result of the latest health check on the PDP: HEALTHY/NOT_HEALTHY
/TEST_IN_PROGRESS

message O N/A N/A A status message for the PDP if any

deployment_instance_info R N/A N/A Information on the node running the PDP

Note: In the Dublin release, the of all policy types in a PDP subgroup must be the same.policy_type_impl

YAML is used for illustrative purposes in the examples in this section. JSON (application/json) will be used as the content type in the implementation of this
API.

3.3.1 PDP Group Query

This operation allows the PDP groups and subgroups to be listed together with the policies that are deployed on each PDP group and subgroup.

https:{url}:{port}/ pap/v1/pdps GETpolicy/

PDP Group query for all PDP groups and Subgroups

pdp_groups:
 - name: onap.pdpgroup.controlloop.Operational
 version: 1.0.0
 state: active
 description: ONAP Control Loop Operational and Guard policies
 properties:
 # PDP group level properties if any
 pdp_subgroups:
 pdp_type: drools
 supported_policy_types:
 - onap.controllloop.operational.drools.vCPE
 - onap.controllloop.operational.drools.vFW
 policies:

 - onap.controllloop.operational.drools.vCPE.eastRegion:
 policy_type: onap.controllloop.operational.drools.vCPE
 policy_type_version: 1.0.0
 policy_type_impl: onap.controllloop.operational.drools.impl
 - onap.controllloop.operational.drools.vFW.eastRegion:
 policy_type: onap.controllloop.operational.drools.vFW
 policy_type_version: 1.0.0
 policy_type_impl: onap.controllloop.operational.drools.impl
 min_instance_count: 3
 instance_count: 3
 properties:
 # The properties below are for illustration only
 instance_spawn_load_threshold: 70%
 instance_kill_load_threshold: 50%
 instance_geo_redundancy: true
 deployment_info:
 service_endpoint: https://<the drools service endpoint for this PDP group>
 deployment: A deployment identifier
 # Other deployment info
 instances:
 - instance: drools_1
 state: active
 healthy: yes
 deployment_instance_info:
 node_address: drools_1_pod
 # Other deployment instance info
 - instance: drools_2
 state: active
 healthy: yes
 deployment_instance_info:
 node_address: drools_2_pod
 # Other deployment instance info
 - instance: drools_3
 state: active
 healthy: yes
 deployment_instance_info:
 node_address: drools_3_pod
 # Other deployment instance info

 - pdp_type: apex
 supported_policy_types:
 - onap.controllloop.operational.apex.BBS
 - onap.controllloop.operational.apex.SampleDomain
 policies:
 - onap.controllloop.operational.apex.BBS.eastRegion:
 policy_type: onap.controllloop.operational.apex.BBS
 policy_type_version: 1.0.0
 policy_type_impl: onap.controllloop.operational.apex.impl
 - onap.controllloop.operational.apex.sampledomain.eastRegion:
 policy_type: onap.controllloop.operational.apex.SampleDomain
 policy_type_version: 1.0.0
 policy_type_impl: onap.controllloop.operational.apex.impl
 min_instance_count: 2
 instance_count: 3
 properties:
 # The properties below are for illustration only
 instance_spawn_load_threshold: 80%
 instance_kill_load_threshold: 60%
 instance_geo_redundancy: true
 deployment_info:
 service_endpoint: https://<the apex service endpoint for this PDP group>
 deployment: A deployment identifier
 # Other deployment info
 instances:
 - instance: apex_1
 state: active
 healthy: yes
 deployment_instance_info:
 node_address: apex_1_podgroup
 # Other deployment instance info
 - instance: apex_2

 deployment_instance_info:
 node_address: apex_2_pod
 # Other deployment instance infoCreation
 - instance: apex_3
 state: active
 healthy: yes
 deployment_instance_info:
 node_address: apex_3_pod
 # Other deployment instance info

 - pdp_type: xacml
 supported_policy_types:
 - onap.policies.controlloop.guard.FrequencyLimiter
 - onap.policies.controlloop.guard.BlackList
 - onap.policies.controlloop.guard.MinMax
 policies:
 - onap.policies.controlloop.guard.frequencylimiter.EastRegion:
 policy_type: onap.policies.controlloop.guard.FrequencyLimiter
 policy_type_version: 1.0.0
 policy_type_impl: onap.controllloop.guard.impl
 - onap.policies.controlloop.guard.blackList.EastRegion:
 policy_type: onap.policies.controlloop.guard.BlackList
 policy_type_version: 1.0.0
 policy_type_impl: onap.controllloop.guard.impl
 - onap.policies.controlloop.Guard.MinMax.EastRegion:
 policy_type: onap.policies.controlloop.guard.MinMax
 policy_type_version: 1.0.0
 policy_type_impl: onap.controllloop.guard.impl
 min_instance_count: 2
 instance_count: 2
 properties:
 # The properties below are for illustration only
 instance_geo_redundancy: true
 deployment_info:
 service_endpoint: https://<the XACML service endpoint for this PDP group>
 deployment: A deployment identifier
 # Other deployment info
 instances:
 - instance: xacml_1
 state: active
 healthy: yes
 deployment_instance_info:
 node_address: xacml_1_pod
 # Other deployment instance info
 - instance: xacml_2
 state: active
 healthy: yes
 deployment_instance_info:
 node_address: xacml_2_pod
 # Other deployment instance info

 - name: onap.pdpgroup.monitoring
 version: 2.1.3
 state: active
 description: DCAE mS Configuration Policies
 properties:
 # PDP group level properties if any
 pdp_subgroups:
 - pdp_type: xacml
 supported_policy_types:
 - onap.policies.monitoring.cdap.tca.hi.lo.app
 policies:
 - onap.scaleout.tca:
 policy_type: onap.policies.monitoring.cdap.tca.hi.lo.app
 policy_type_version: 1.0.0
 policy_type_impl: onap.policies.monitoring.impl
 min_instance_count: 2
 instance_count: 2
 properties:
 # The properties below are for illustration only
 instance_geo_redundancy: true

 deployment_info:
 service_endpoint: https://<the XACML service endpoint for this PDP group>
 deployment: A deployment identifier
 # Other deployment info
 instances:
 - instance: xacml_1
 state: active
 healthy: yes
 deployment_instance_info:
 node_address: xacml_1_pod
 # Other deployment instance info
 - instance: xacml_2
 state: active
 healthy: yes
 deployment_instance_info:
 node_address: xacml_2_pod
 # Other deployment instance info

The table below shows some more examples of GET operations

Example Description

https:{url}:{port}/ pap/v1/pdpspolicy/ Get all PDP Groups and subgroups in the system

https:{url}:{port}/ pap/v1/pdps/groups/onap.pdpgroup.controllooppolicy/ Get PDP Groups and subgroups that match the supplied name
filter

https:{url}:{port}/ pap/v1/pdps/groups/onap.pdpgroup.monitoring/subgroupspolicy/
/xacml

Get the PDP subgroup informtation for the specified subgroup

3.3.2 PDP Group Deployment

This operation allows the PDP groups and subgroups to be created. A POST operation is used to create a new PDP group name. A POST operation is
also used to update an existing PDP group. Many PDP groups can be created or updated in a single POST operation by specifying more than one PDP
group in the POST operation body.

https:{url}:{port}/ pap/v1/pdps POSTpolicy/

POST body to deploy or update PDP groups

pdp_groups:
 - name: onap.pdpgroup.controlloop.operational
 description: ONAP Control Loop Operational and Guard policies
 pdp_subgroups:
 - pdp_type: drools
 supportedPolicyTypes:
 - onap.controllloop.operational.drools.vcpe.EastRegion
 version: 1.2.3
 - onap.controllloop.operational.drools.vfw.EastRegion
 version: 1.2.3
 min_instance_count: 3group
 properties:
 # The properties below are for illustration only
 instance_spawn_load_threshold: 70%
 instance_kill_load_threshold: 50%
 instance_geo_redundancy: true

 - pdp_type: apex
 policies:
 - onap.controllloop.operational.apex.bbs.EastRegion
 version: 1.2.3
 - onap.controllloop.operational.apex.sampledomain.EastRegion
 version: 1.2.3
 min_instance_count: 2
 properties:
 # The properties below are for illustration only
 instance_spawn_load_threshold: 80%
 instance_kill_load_threshold: 60%
 instance_geo_redundancy: true

 - pdp_type: xacml
 policies:
 - onap.policies.controlloop.guard.frequencylimiter.EastRegion
 version: 1.2.3
 - onap.policies.controlloop.guard.blacklist.EastRegion
 version: 1.2.3
 - onap.policies.controlloop.guard.minmax.EastRegion
 version: 1.2.3
 min_instance_count: 2
 properties:
 # The properties below are for illustration only
 instance_geo_redundancy: true

 - name: onap.pdpgroup.monitoring
 description: DCAE mS Configuration Policies
 properties:
 # PDP group level properties if any
 pdp_subgroups:
 - pdp_type: xacml
 policies:
 - onap.scaleout.tca
 version: 1.2.3
 min_instance_count: 2
 properties:
 # The properties below are for illustration only
 instance_geo_redundancy: true

Other systems such as CLAMP can use this API to deploy policies using a POST operation with the body below where only mandatory fields are specified.

https:{url}:{port}/ pap/v1/pdps POSTpolicy/

POST body to deploy or update PDP groups

pdp_groups:
 - name: onap.pdpgroup.Monitoring
 description: DCAE mS Configuration Policies
 pdp_subgroups:
 - pdp_type: xacml
 policies:
 - onap.scaleout.tca

Simple API for CLAMP to deploy one or more policy-id's with optional policy-version.

https:{url}:{port}/ pap/v1/pdps/policies POSTpolicy/

Content-Type: application/json

{
 "policies" : [
 {
 "policy-id": "onap.scaleout.tca",
 "policy-version": 1
 },
 {
 "policy-id": "ControlLoop-vDNS-6f37f56d-a87d-4b85-b6a9-cc953cf779b3"
 },
 {
 "policy-id": "guard.frequency.ControlLoop-vDNS-6f37f56d-a87d-4b85-b6a9-cc953cf779b3"
 },
 {
 "policy-id": "guard.minmax.ControlLoop-vDNS-6f37f56d-a87d-4b85-b6a9-cc953cf779b3"
 }
]
}

HTTP status code indicates success or failure.{

 "errorDetails": "some error message"
}

Simple API for CLAMP to undeploy a policy-id with optional policy-version.

https:{url}:{port}/ pap/v1/pdps/policies{policy-id} DELETEpolicy/

https:{url}:{port}/ pap/v1/pdps/policies{policy-id}/versions/{policy-version} DELETEpolicy/

HTTP status code indicates success or failure.

{
 "errorDetails": "some error message"
}

3.3.3 PDP Group Delete

The API also allows PDP groups to be deleted with a DELETE operation. DELETE operations are only permitted on PDP groups in PASSIVE state. The
format of the delete operation is as below:

https:{url}:{port}/ pap/v1/pdps/groups/onap.pdpgroup.monitoring DELETEpolicy/

1.
2.
3.

4.
5.

3.3.4 PDP Group State Management

The state of PDP groups is managed by the API. PDP groups can be in states PASSIVE, TEST, SAFE, or ACTIVE. For a full description of PDP group
states, see architecture page. The state of a PDP group is changed with a PUT operation.The ONAP Policy Framework

The following PUT operation changes a PDP group to ACTIVE:

https:{url}:{port}/ pap/v1/pdps/groups/onap.pdpgroup.monitoring/state=activepolicy/

There are a number of rules for state management:

Only one version of a PDP group may be ACTIVE at any time
If a PDP group with a certain version is ACTIVE and a later version of the same PDP group is activated, then the system upgrades the PDP group
If a PDP group with a certain version is ACTIVE and an earlier version of the same PDP group is activated, then the system downgrades the PDP
group
There is no restriction on the number of PASSIVE versions of a PDP group that can exist in the system
<Rules on SAFE/TEST> ? Pamela Dragosh

3.3.5 PDP Group Statistics

This operation allows statistics for PDP groups, PDP subgroups, and individual PDPs to be retrieved.

https:{url}:{port}/ pap/v1/pdps/statistics GETpolicy/

Draft Example statistics returned for a PDP Group

report_timestamp: 2019-02-11T15:23:50+00:00
pdp_group_count: 2
pdp_groups:
 - name: onap.pdpgroup.controlloop.Operational
 state: active
 create_timestamp: 2019-02-11T15:23:50+00:00
 update_timestamp: 2019-02-12T15:23:50+00:00
 state_change_timestamp: 2019-02-13T15:23:50+00:00
 pdp_subgroups:
 - pdp_type: drools
 instance_count: 3
 deployed_policy_count: 2
 policy_execution_count: 123
 policy_execution_ok_count: 121
 policy_execution_fail_count: 2
 instances:
 - instance: drools_1
 start_timestamp: 2019-02-13T15:23:50+00:00
 policy_execution_count: 50
 policy_execution_ok_count: 49
 policy_execution_fail_count: 1
 - instance: drools_2
 start_timestamp: 2019-02-13T15:30:50+00:00
 policy_execution_count: 50
 policy_execution_ok_count: 49
 policy_execution_fail_count: 1
 - instance: drools_3
 start_timestamp: 2019-02-13T15:33:50+00:00
 policy_execution_count: 23
 policy_execution_ok_count: 23
 policy_execution_fail_count: 0

The table below shows some more examples of GET operations for statistics

Example Description

https:{url}:{port}/ /v1/pdpspolicy/pap /statistics Get statistics for all PDP Groups and subgroups in the system

https:{url}:{port}/ pap/v1/pdps groups/onap.pdpgroup.controlloop/statisticspolicy/ / Get statistics for all PDP Groups and subgroups that match the
supplied name filter

https:{url}:{port}/ pap/v1/pdps nap.pdpgroup.monitoring/subgroupspolicy/ /groups/o
/xacml/statistics

Get statistics for the specified subgroup

https://wiki.onap.org/display/DW/The+ONAP+Policy+Framework
https://wiki.onap.org/display/~pdragosh

3.3.6 PDP Group Health Check

A PDP group health check allows ordering of health checks on PDP groups and on individual PDPs. As health checks may be long lived operations, Health
checks are scheduled for execution by this operation. Users check the result of a health check test by issuing a PDP Group Query operation (see Section
3.3.1) and checking the field of PDPs.healthy

https:{url}:{port}/ pap/v1/pdps/healthcheck PUTpolicy/

The operation returns a HTTP status code of 202: Accepted if the health check request has been accepted by the PAP. The PAP then orders execution of
the health check on the PDPs. The health check result is retrieved with a subsequent GET operation.

The table below shows some more examples of PUT operations for ordering health checks

Example Description

https:{url}:{port}/ pap/v1/pdpspolicy/ /healthcheck PUT Order a health check on all PDP Groups and subgroups in the
system

https:{url}:{port}/ pap/v1/pdps groups/onap.pdpgroup.controllooppolicy/ /
/healthcheck PUT

Order a health check on all PDP Groups and subgroups that match
the supplied name filter

https:{url}:{port}/ pap/v1/pdps nap.pdpgroup.monitoringpolicy/ /groups/o
/subgroups/xacml/healthcheck PUT

Order a health check on the specified subgroup

3.4 Policy Decision API - Getting Policy Decisions

Policy decisions are required by ONAP components to support the policy-driven ONAP architecture. Policy Decisions are implemented using the XACML
PDP. The calling application must provide attributes in order for the XACML PDP to return a correct decision.

3.4.1 Decision API Schema

The schema for the decision API is defined below.

3.4.2 Decision API Queries

Decision API queries are implemented with a POST operation with a JSON body that specifies the filter for the policies to be returned. The JSON body
must comply with the schema sepcified in Section 3.4.1.

https:{url}:{port}/decision/v1/ POST

Description of the JSON Payload for the decision API Call

Field R/O Type Description

ONAPName R String Name of the ONAP Project that is making the request.

ONAPComponent O String Name of the ONAP Project component that is making the request.

ONAPInstance O String Optional instance identification for that ONAP component.

action R String The action that the ONAP component is performing on a resource.

eg. "configure" DCAE uS onap.Monitoring policy Decisions to configure uS

"naming"

"placement"

"guard"

These sub metadata structures are used to refine which resource the ONAP component is performing an action upon.

At least one is required in order for Policy to return a Decision.

Multiple structures may be utilized to help refine a Decision.

policy-type-name String The policy type name. This may be a regular expression.

policy-id String The policy id. This may be a regular expression or an exact value.

This example below shows the JSON body of a query for a specify policy-id

Decision API Call - Policy ID

{
 "ONAPName": "DCAE",
 "ONAPComponent": "PolicyHandler",
 "ONAPInstance": "622431a4-9dea-4eae-b443-3b2164639c64",
 "action": "configure",
 "resource": {
 "policy-id": "onap.scaleout.tca"
 }
}

Decision Response - Single Policy ID query

{
 "policies": {
 "onap.scaleout.tca": {
 "type": "onap.policies.monitoring.cdap.tca.hi.lo.app",
 "version": "1.0.0",
 "metadata": {
 "policy-id": "onap.scaleout.tca",
 "policy-version": 1
 },
 "properties": {
 "tca_policy": {
 "domain": "measurementsForVfScaling",
 "metricsPerEventName": [
 {
 "eventName": "vLoadBalancer",
 "controlLoopSchemaType": "VNF",
 "policyScope": "type=configuration",
 "policyName": "onap.scaleout.tca",
 "policyVersion": "v0.0.1",
 "thresholds": [
 {
 "closedLoopControlName": "ControlLoop-
vDNS-6f37f56d-a87d-4b85-b6a9-cc953cf779b3",
 "closedLoopEventStatus": "ONSET",
 "version": "1.0.2",
 "fieldPath": "$.event.
measurementsForVfScalingFields.vNicPerformanceArray[*].receivedBroadcastPacketsAccumulated",
 "thresholdValue": 500,
 "direction": "LESS_OR_EQUAL",
 "severity": "MAJOR"
 },
 {
 "closedLoopControlName": "ControlLoop-
vDNS-6f37f56d-a87d-4b85-b6a9-cc953cf779b3",
 "closedLoopEventStatus": "ONSET",
 "version": "1.0.2",
 "fieldPath": "$.event.
measurementsForVfScalingFields.vNicPerformanceArray[*].receivedBroadcastPacketsAccumulated",
 "thresholdValue": 5000,
 "direction": "GREATER_OR_EQUAL",
 "severity": "CRITICAL"
 }
]
 }
]
 }
 }
 }
 }
}

This example below shows the JSON body of a query for a multiple policy-id's

Decision API Call - Policy ID

{
 "ONAPName": "DCAE",
 "ONAPComponent": "PolicyHandler",
 "ONAPInstance": "622431a4-9dea-4eae-b443-3b2164639c64",
 "action": "configure",
 "resource": {
 "policy-id": [
 "onap.scaleout.tca",
 "onap.restart.tca"
]
 }
}

The following is the response object:

Decision Response - Single Policy ID query

{
 "policies": {
 "onap.scaleout.tca": {
 "type": "onap.policies.monitoring.cdap.tca.hi.lo.app",
 "version": "1.0.0",
 "metadata": {
 "policy-id": "onap.scaleout.tca"
 },
 "properties": {
 "tca_policy": {
 "domain": "measurementsForVfScaling",
 "metricsPerEventName": [
 {
 "eventName": "vLoadBalancer",
 "controlLoopSchemaType": "VNF",
 "policyScope": "type=configuration",
 "policyName": "onap.scaleout.tca",
 "policyVersion": "v0.0.1",
 "thresholds": [
 {
 "closedLoopControlName": "ControlLoop-
vDNS-6f37f56d-a87d-4b85-b6a9-cc953cf779b3",
 "closedLoopEventStatus": "ONSET",
 "version": "1.0.2",
 "fieldPath": "$.event.
measurementsForVfScalingFields.vNicPerformanceArray[*].receivedBroadcastPacketsAccumulated",
 "thresholdValue": 500,
 "direction": "LESS_OR_EQUAL",
 "severity": "MAJOR"
 },
 {
 "closedLoopControlName": "ControlLoop-
vDNS-6f37f56d-a87d-4b85-b6a9-cc953cf779b3",
 "closedLoopEventStatus": "ONSET",
 "version": "1.0.2",
 "fieldPath": "$.event.
measurementsForVfScalingFields.vNicPerformanceArray[*].receivedBroadcastPacketsAccumulated",
 "thresholdValue": 5000,
 "direction": "GREATER_OR_EQUAL",
 "severity": "CRITICAL"
 }
]
 }
]
 }

 }
 },
 "onap.restart.tca": {
 "type": "onap.policies.monitoring.cdap.tca.hi.lo.app",
 "version": "1.0.0",
 "metadata": {
 "policy-id": "onap.restart.tca",
 "policy-version": 1
 },
 "properties": {
 "tca_policy": {
 "domain": "measurementsForVfScaling",
 "metricsPerEventName": [
 {
 "eventName": "Measurement_vGMUX",
 "controlLoopSchemaType": "VNF",
 "policyScope": "DCAE",
 "policyName": "DCAE.Config_tca-hi-lo",
 "policyVersion": "v0.0.1",
 "thresholds": [
 {
 "closedLoopControlName": "ControlLoop-
vCPE-48f0c2c3-a172-4192-9ae3-052274181b6e",
 "version": "1.0.2",
 "fieldPath": "$.event.
measurementsForVfScalingFields.additionalMeasurements[*].arrayOfFields[0].value",
 "thresholdValue": 0,
 "direction": "EQUAL",
 "severity": "MAJOR",
 "closedLoopEventStatus": "ABATED"
 },
 {
 "closedLoopControlName": "ControlLoop-
vCPE-48f0c2c3-a172-4192-9ae3-052274181b6e",
 "version": "1.0.2",
 "fieldPath": "$.event.
measurementsForVfScalingFields.additionalMeasurements[*].arrayOfFields[0].value",
 "thresholdValue": 0,
 "direction": "GREATER",
 "severity": "CRITICAL",
 "closedLoopEventStatus": "ONSET"
 }
]
 }
]
 }
 }
 }
 }
}

The simple draft example below shows the JSON body of a query in which all the deployed policies for a specific policy type are returned.

{
 "ONAPName": "DCAE",
 "ONAPComponent": "PolicyHandler",
 "ONAPInstance": "622431a4-9dea-4eae-b443-3b2164639c64",
 "action": "configure",
 "resource": {
 "policy-type": "onap.policies.monitoring.cdap.tca.hi.lo.app"
 }
}

The query above gives a response similar to the example shown below.

{
 "policies": {
 "onap.scaleout.tca": {
 "type": "onap.policies.monitoring.cdap.tca.hi.lo.app",
 "version": "1.0.0",
 "metadata": {
 "policy-id": "onap.scaleout.tca",
 "policy-version": 1,
 },
 "properties": {
 "tca_policy": {
 "domain": "measurementsForVfScaling",
 "metricsPerEventName": [
 {
 "eventName": "vLoadBalancer",
 "controlLoopSchemaType": "VNF",
 "policyScope": "type=configuration",
 "policyName": "onap.scaleout.tca",
 "policyVersion": "v0.0.1",
 "thresholds": [
 {
 "closedLoopControlName": "ControlLoop-
vDNS-6f37f56d-a87d-4b85-b6a9-cc953cf779b3",
 "closedLoopEventStatus": "ONSET",
 "version": "1.0.2",
 "fieldPath": "$.event.
measurementsForVfScalingFields.vNicPerformanceArray[*].receivedBroadcastPacketsAccumulated",
 "thresholdValue": 500,
 "direction": "LESS_OR_EQUAL",
 "severity": "MAJOR"
 },
 {
 "closedLoopControlName": "ControlLoop-
vDNS-6f37f56d-a87d-4b85-b6a9-cc953cf779b3",
 "closedLoopEventStatus": "ONSET",
 "version": "1.0.2",
 "fieldPath": "$.event.
measurementsForVfScalingFields.vNicPerformanceArray[*].receivedBroadcastPacketsAccumulated",
 "thresholdValue": 5000,
 "direction": "GREATER_OR_EQUAL",
 "severity": "CRITICAL"
 }
]
 }
]
 }
 }
 },
 "onap.restart.tca": {
 "type": "onap.policies.monitoring.cdap.tca.hi.lo.app",
 "version": "1.0.0",
 "metadata": {
 "policy-id": "onap.restart.tca",
 "policy-version": 1
 },
 "properties": {
 "tca_policy": {
 "domain": "measurementsForVfScaling",
 "metricsPerEventName": [
 {
 "eventName": "Measurement_vGMUX",
 "controlLoopSchemaType": "VNF",
 "policyScope": "DCAE",
 "policyName": "DCAE.Config_tca-hi-lo",
 "policyVersion": "v0.0.1",
 "thresholds": [

 {
 "closedLoopControlName": "ControlLoop-
vCPE-48f0c2c3-a172-4192-9ae3-052274181b6e",
 "version": "1.0.2",
 "fieldPath": "$.event.
measurementsForVfScalingFields.additionalMeasurements[*].arrayOfFields[0].value",
 "thresholdValue": 0,
 "direction": "EQUAL",
 "severity": "MAJOR",
 "closedLoopEventStatus": "ABATED"
 },
 {
 "closedLoopControlName": "ControlLoop-
vCPE-48f0c2c3-a172-4192-9ae3-052274181b6e",
 "version": "1.0.2",
 "fieldPath": "$.event.
measurementsForVfScalingFields.additionalMeasurements[*].arrayOfFields[0].value",
 "thresholdValue": 0,
 "direction": "GREATER",
 "severity": "CRITICAL",
 "closedLoopEventStatus": "ONSET"
 }
]
 }
]
 }
 }
 },
 "onap.vfirewall.tca": {
 "type": "onap.policy.monitoring.cdap.tca.hi.lo.app",
 "version": "1.0.0",
 "metadata": {
 "policy-id": "onap.vfirewall.tca",
 "policy-version": 1
 },
 "properties": {
 "tca_policy": {
 "domain": "measurementsForVfScaling",
 "metricsPerEventName": [
 {
 "eventName": "vLoadBalancer",
 "controlLoopSchemaType": "VNF",
 "policyScope": "resource=vLoadBalancer;
type=configuration",
 "policyName": "onap.vfirewall.tca",
 "policyVersion": "v0.0.1",
 "thresholds": [
 {
 "closedLoopControlName": "ControlLoop-
vFirewall-d0a1dfc6-94f5-4fd4-a5b5-4630b438850a",
 "closedLoopEventStatus": "ONSET",
 "version": "1.0.2",
 "fieldPath": "$.event.
measurementsForVfScalingFields.vNicPerformanceArray[*].receivedBroadcastPacketsAccumulated",
 "thresholdValue": 500,
 "direction": "LESS_OR_EQUAL",
 "severity": "MAJOR"
 },
 {
 "closedLoopControlName": "ControlLoop-
vFirewall-d0a1dfc6-94f5-4fd4-a5b5-4630b438850a",
 "closedLoopEventStatus": "ONSET",
 "version": "1.0.2",
 "fieldPath": "$.event.
measurementsForVfScalingFields.vNicPerformanceArray[*].receivedBroadcastPacketsAccumulated",
 "thresholdValue": 5000,
 "direction": "GREATER_OR_EQUAL",
 "severity": "CRITICAL"
 }
]
 }

1.
2.

3.

4.

]
 }
 }
 }
 }
}

4. Policy Framework Internal APIs
The Policy Framework uses the internal APIs documented in the subsections below. The APIs in this section are used for internal communication in the
Policy Framework. The APIs are NOT supported for use by components outside the Policy Framework and are subject to revision and change at any time.

4.1 PAP to PDP API

This section describes the API between the PAP and PDPs. The APIs in this section are implemented using messaging. There are four DMaaP API
messages on the API:

PDP_STATUS: PDPPAP, used by PDPs to report to the PAP
PDP_UPDATE: PAPPDP, used by the PAP to update the policies running on PDPs, triggers a PDP_STATUS message with the result of the
PDP_UPDATE operation
PDP_STATE_CHANGE: PAPPDP, used by the PAP to change the state of PDPs, triggers a PDP_STATUS message with the result of the
PDP_STATE_CHANGE operation
PDP_HEALTH_CHECK: PAPPDP, used by the PAP to order a heakth check on PDPs, triggers a PDP_STATUS message with the result of the
PDP_HEALTH_CHECK operation

The fields below are valid on API calls:

Field PDP
STATUS

PDP
UPDATE

PDP
STATE

CHANGE

PDP
HEALTH
CHECK

Comment

(message_name) M M M M pdp_status, pdp_update, pdp_state_change, or pdp_health_check

name M M C C The name of the PDP, for state changes and health checks, the PDP group and
subgroup can be used to specify the scope of the operation

version M N/A N/A N/A The version of the PDP

pdp_type M M N/A N/A The type of the PDP, currently xacml, drools, or apex

state M N/A M N/A The administrative state of the PDP group: PASSIVE, SAFE, TEST, ACTIVE, or
TERMINATED

healthy M N/A N/A N/A The result of the latest health check on the PDP: HEALTHY/NOT_HEALTHY
/TEST_IN_PROGRESS

description O O N/A N/A The description of the PDP

pdp_group O M C C The PDP group to which the PDP belongs, the PDP group and subgroup can be used
to specify the scope of the operation

pdp_subgroup O M C C The PDP subgroup to which the PDP belongs, the PDP group and subgroup can be
used to specify the scope of the operation

supported_policy_ty
pes

M N/A N/A N/A A list of the policy types supported by the PDP

policies O M N/A N/A The list of policies running on the PDP

(name) O M N/A N/A The name of a TOSCA policy running on the PDP

policy_type O M N/A N/A The TOSCA policy type of the policyWhen a PDP starts, it commences periodic
sending of messages on DMaaP. The PAP receives these messages PDP_STATUS
and acts in whatever manner is appropriate.

policy_type_vers
ion

O M N/A N/A The version of the TOSCA policy type of the policy

properties O M N/A N/A The properties of the policy for the XACML, Drools, or APEX PDP, see section 3.2 for
details

instance M N/A N/A N/A The instance ID of the PDP running in a Kuberenetes Pod

deployment_instanc
e_info

M N/A N/A N/A Information on the node running the PDP

properties O O N/A N/A Other properties specific to the PDP

https://wiki.onap.org/display/DW/DMaaP+API

statistics M N/A N/A N/A Statistics on policy execution in the PDP

policy_download
_count

M N/A N/A N/A The number of policies downloaded into the PDP

policy_download
_success_count

M N/A N/A N/A The number of policies successfully downloaded into the PDP

policy_download
_fail_count

M N/A N/A N/A The number of policies downloaded into the PDP where the download failed

policy_executed
_count

M N/A N/A N/A The number of policy executions on the PDP

policy_executed
_success_count

M N/A N/A N/A The number of policy executions on the PDP that completed successfully

policy_executed
_fail_count

M N/A N/A N/A The number of policy executions on the PDP that failed

response O N/A N/A N/A The response to the last operation that the PAP executed on the PDP

response_to M N/A N/A N/A The PAP to PDP message to which this is a response

response_status M N/A N/A N/A SUCCESS or FAIL

response_mess
age

O N/A N/A N/A Message giving further information on the successful or failed operation

YAML is used for illustrative purposes in the examples in this section. JSON (application/json) is used as the content type in the implementation of this API.

Note: The PAP checks that the set of policy types supported in all PDPs in a PDP subgroup are identical and will not add a PDP to a PDP subgroup that
has a different set of supported policy types
Note: The PA checks that the set of policy loaded on all PDPs in a PDP subgroup are are identical and will not add a PDP to a PDP subgroup that has a
different set of loaded policies

4.1.1 PAP API for PDPs

The purpose of this API is for PDPs to provide heartbeat, status. health, and statistical information to Policy Administration. There is a single PDP_STATUS
message on this API. PDPs send this message to the PAP using the DMaaP topic. The PAP listens on this topic for messages.POLICY_PDP_PAP

When a PDP starts, it commences periodic sending of messages on DMaaP. The PAP receives these messages and acts in whatever PDP_STATUS
manner is appropriate. , , and operations trigger a message as a response.PDP_UPDATE PDP_STATE_CHANGE PDP_HEALTH_CHECK PDP_STATUS

The message is used for PDP heartbeat monitoring. A PDP sends a message with a state of when it PDP_STATUS PDP_STATUS TERMINATED
terminates normally. If a message is not received from a PDP in a certain configurable time, then the PAP assumes the PDP has failed.PDP_STATUS

A PDP may be preconfigured with its PDP group, PDP subgroup, and policies. If the PDP group, subgroup, or any policy sent to the PAP in a PDP_STATUS
message is unknown to the PAP, the PAP locks the PDP in state PASSIVE.

PDP_STATUS message from an XACML PDP running control loop policies

pdp_status:
 name: xacml_1
 version: 1.2.3
 pdp_type: xacml
 state: active
 healthy: true
 description: XACML PDP running control loop policies
 pdp_group: onap.pdpgroup.controlloop.operational
 pdp_subgroup: xacml
 supported_policy_types:
 - onap.policies.controlloop.guard.FrequencyLimiter
 - onap.policies.controlloop.guard.BlackList
 - onap.policies.controlloop.guard.MinMax
 policies:
 - onap.policies.controlloop.guard.frequencylimiter.EastRegion:
 policy_type: onap.policies.controlloop.guard.FrequencyLimiter
 policy_type_version: 1.0.0
 properties:
 # Omitted for brevity, see Section 3.2
 - onap.policies.controlloop.guard.blacklist.eastRegion:
 policy_type: onap.policies.controlloop.guard.BlackList
 policy_type_version: 1.0.0
 properties:
 # Omitted for brevity, see Section 3.2
 - onap.policies.controlloop.guard.minmax.eastRegion:
 policy_type: onap.policies.controlloop.guard.MinMax
 policy_type_version: 1.0.0
 properties:
 # Omitted for brevity, see Section 3.2
 instance: xacml_1
 deployment_instance_info:
 node_address: xacml_1_pod
 # Other deployment instance info
 statistics:
 policy_download_count: 0
 policy_download_success_count: 0
 policy_download_fail_count: 0
 policy_executed_count: 123
 policy_executed_success_count: 122
 policy_executed_fail_count: 1

PDP_STATUS message from a Drools PDP running control loop policies

pdp_status:
 name: drools_2
 version: 2.3.4
 pdp_type: drools
 state: safe
 healthy: true
 description: Drools PDP running control loop policies
 pdp_group: onap.pdpgroup.controlloop.operational
 pdp_subgroup: drools
 supported_policy_types:
 - onap.controllloop.operational.drools.vCPE
 - onap.controllloop.operational.drools.vFW
 policies:
 - onap.controllloop.operational.drools.vcpe.EastRegion:
 policy_type: onap.controllloop.operational.drools.vCPE
 policy_type_version: 1.0.0
 properties:
 # Omitted for brevity, see Section 3.2
 - onap.controllloop.operational.drools.vfw.EastRegion:
 policy_type: onap.controllloop.operational.drools.vFW
 policy_type_version: 1.0.0
 properties:
 # Omitted for brevity, see Section 3.2
 instance: drools_2
 deployment_instance_info:
 node_address: drools_2_pod
 # Other deployment instance info
 statistics:
 policy_download_count: 3
 policy_download_success_count: 3
 policy_download_fail_count: 0
 policy_executed_count: 123
 policy_executed_success_count: 122
 policy_executed_fail_count: 1
 response:
 response_to: PDP_HEALTH_CHECK
 response_status: SUCCESS

PDP_STATUS message from an APEX PDP running control loop policies

pdp_status:
 name: apex_3
 version: 2.2.1
 pdp_type: apex
 state: test
 healthy: true
 description: APEX PDP running control loop policies
 pdp_group: onap.pdpgroup.controlloop.operational
 pdp_subgroup: apex
 supported_policy_types:
 - onap.controllloop.operational.apex.BBS
 - onap.controllloop.operational.apex.SampleDomain
 policies:
 - onap.controllloop.operational.apex.bbs.EastRegion:
 policy_type: onap.controllloop.operational.apex.BBS
 policy_type_version: 1.0.0
 properties:
 # Omitted for brevity, see Section 3.2
 - onap.controllloop.operational.apex.sampledomain.EastRegion:
 policy_type: onap.controllloop.operational.apex.SampleDomain
 policy_type_version: 1.0.0
 properties:
 # Omitted for brevity, see Section 3.2
 instance: apex_3
 deployment_instance_info:node_address
 node_address: apex_3_pod
 # Other deployment instance info
 statistics:
 policy_download_count: 2
 policy_download_success_count: 2
 policy_download_fail_count: 0
 policy_executed_count: 123
 policy_executed_success_count: 122
 policy_executed_fail_count: 1
 response:
 response_to: PDP_UPDATE
 response_status: FAIL
 response_message: policies specified in update message incompatible with running policy state

PDP_STATUS message from an XACML PDP running monitoring policies

pdp_status:
 name: xacml_1
 version: 1.2.3
 pdp_type: xacml
 state: active
 healthy: true
 description: XACML PDP running monitoring policies
 pdp_group: onap.pdpgroup.Monitoring
 pdp_subgroup: xacml
 supported_policy_types:
 - onap.monitoring.cdap.tca.hi.lo.app
 policies:
 - onap.scaleout.tca:message
 policy_type: onap.policies.monitoring.cdap.tca.hi.lo.app
 policy_type_version: 1.0.0
 properties:
 # Omitted for brevity, see Section 3.2
 instance: xacml_1
 deployment_instance_info:
 node_address: xacml_1_pod
 # Other deployment instance info
 statistics:
 policy_download_count: 0
 policy_download_success_count: 0
 policy_download_fail_count: 0
 policy_executed_count: 123
 policy_executed_success_count: 122
 policy_executed_fail_count: 1

4.1.2 PDP API for PAPs

The purpose of this API is for the PAP to load and update policies on PDPs and to change the state of PDPs. It also allows the PAP to order health checks
to run on PDPs. The PAP sends , STATE_CHANGE, and messages to PDPs using the PDP_UPDATE PDP_ PDP_HEALTH_CHECK POLICY_PAP_PDP
DMaaP topic. PDPs listens on this topic for messages.

The PAP can set the scope of STATE_CHANGE, and messages:PDP_HEALTH_CHECK

PDP Group: If a PDP group is specified in a message, then the PDPs in that PDP group respond to the message and all other PDPs ignore it.
PDP Group and subgroup: If a PDP group and subgroup are specified in a message, then only the PDPs of that subgroup in the PDP group
respond to the message and all other PDPs ignore it.
Single PDP: If the name of a PDP is specified in a message, then only that PDP responds to the message and all other PDPs ignore it.

Note: messages must be issued individually to PDPs because the operation can change the PDP group to which a PDP PDP_UPDATE PDP_UPDATE
belongs.

4.1.2.1 PDP Update

The operation allows the PAP to modify the PDP group to which a PDP belongs and the policies in a PDP. Only PDPs in state PASSIVE PDP_UPDATE
accept this operation. The PAP must change the state of PDPs in state ACTIVE, TEST, or SAFE to state PASSIVE before issuing a PDP_UPDATE
operation on a PDP.

The following examples illustrate how the operation is used.

PDP_UPDATE message to upgrade XACML PDP control loop policies to versino 1.0.1

pdp_update:
 name: xacml_1
 pdp_type: xacml
 description: XACML PDP running control loop policies, Upgraded
 pdp_group: onap.pdpgroup.controlloop.operational
 pdp_subgroup: xacml
 policies:
 - onap.policies.controlloop.guard.frequencylimiter.EastRegion:
 policy_type: onap.policies.controlloop.guard.FrequencyLimiter
 policy_type_version: 1.0.1
 properties:
 # Omitted for brevity, see Section 3.2
 - onap.policies.controlloop.guard.blackList.EastRegion:
 policy_type: onap.policies.controlloop.guard.BlackList
 policy_type_version: 1.0.1
 properties:
 # Omitted for brevity, see Section 3.2
 - onap.policies.controlloop.guard.minmax.EastRegion:
 policy_type: onap.policies.controlloop.guard.MinMax
 policy_type_version: 1.0.1
 properties:
 # Omitted for brevity, see Section 3.2

PDP_UPDATE message to a Drools PDP to add an extra control loop policy

pdp_update:
 name: drools_2
 pdp_type: drools
 description: Drools PDP running control loop policies, extra policy added
 pdp_group: onap.pdpgroup.controlloop.operational
 pdp_subgroup: drools
 policies:
 - onap.controllloop.operational.drools.vcpe.EastRegion:
 policy_type: onap.controllloop.operational.drools.vCPE
 policy_type_version: 1.0.0
 properties:
 # Omitted for brevity, see Section 3.2
 - onap.controllloop.operational.drools.vfw.EastRegion:
 policy_type: onap.controllloop.operational.drools.vFW
 policy_type_version: 1.0.0
 properties:
 # Omitted for brevity, see Section 3.2
 - onap.controllloop.operational.drools.vfw.WestRegion:
 policy_type: onap.controllloop.operational.drools.vFW
 policy_type_version: 1.0.0
 properties:
 # Omitted for brevity, see Section 3.2

PDP_UPDATE message to an APEX PDP to remove a control loop policy

pdp_update:
 name: apex_3
 pdp_type: apex
 description: APEX PDP updated to remove a control loop policy
 pdp_group: onap.pdpgroup.controlloop.operational
 pdp_subgroup: apex
 policies:
 - onap.controllloop.operational.apex.bbs.EastRegion:
 policy_type: onap.controllloop.operational.apex.BBS
 policy_type_version: 1.0.0
 properties:
 # Omitted for brevity, see Section 3.2

4.1.2.2 PDP State Change

The operation allows the PAP to order state changes on PDPs in PDP groups and subgroups. The following examples illustrate PDP_STATE_CHANGE
how the operation is used.

Change the state of all control loop Drools PDPs to ACTIVE

pdp_state_change:
 state: active
 pdp_group: onap.pdpgroup.controlloop.Operational
 pdp_subgroup: drools

Change the state of all monitoring PDPs to SAFE

pdp_state_change:
 state: safe
 pdp_group: onap.pdpgroup.Monitoring

Change the state of a single APEX PDP to TEST

pdp_state_change:
 state: test
 name: apex_3

4.1.2.3 PDP Health Check

The operation allows the PAP to order health checks on PDPs in PDP groups and subgroups. The following examples illustrate PDP_HEALTH_CHECK
how the operation is used.

Perform a health check on all control loop Drools PDPs

pdp_health_check:
 pdp_group: onap.pdpgroup.controlloop.Operational
 pdp_subgroup: drools

perform a health check on all monitoring PDPs

pdp_health_check:
 pdp_group: onap.pdpgroup.Monitoring

Perform a health check on a single APEX PDP

pdp_health_check:
 name: apex_3

4.2 Policy Type Implementations (Native Policies)

The policy Framework must have implementations for all Policy Type entities that may be specified in TOSCA. Policy type implementations are native
policies for the various PDPs supported in the Policy Framework. They may be predefined and preloaded into the Policy Framework. In addition, they may
also be added, modified, queried, or deleted using this API during runtime.

The API supports CRUD of policy type implementations, where the XACML, Drools, and APEX policy type implementations are supplied PolicyTypeImpl
as strings. This API is provided by the component of the Policy Framework, see architecture.PolicyDevelopment The ONAP Policy Framework

Note that client-side editing support for TOSCA definitions or for implementations in XACML, Drools, or APEX is outside the PolicyType PolicyTypeImpl
current scope of the API.
Note: Preloaded policy type implementations may only be queried over this API, modification or deletion of preloaded policy type implementations is
disabled.
Note: Policy type implementations that are in use (referenced by defined Policies) may not be deleted.

The fields below are valid on API calls:

Field GET POST DELETE Comment

name M M M The name of the Policy Type implementation

version O M C The version of the Policy Type implementation

policy_type R M N/A The TOSCA policy type that this policy type implementation implements

pdp_type R M N/A The PDP type of this policy type implementation, currently xacml, drools, or apex

description R O N/A The description of the policy type implementation

writable R N/A N/A Writable flag, false for predefined policy type implementations, true for policy type implementations defined over the API

policy_body R M N/A The body (source) of the policy type implementation

properties R O N/A Specific properties for the policy type implementation

4.2.1 Policy Type Implementation Query

This operation allows the PDP groups and subgroups to be listed together with the policies that are deployed on each PDP group and subgroup.

 GETonap.policies. operational/implshttps:{url}:{port}/policy/api/v1/native/ controlloop.

https://wiki.onap.org/display/DW/The+ONAP+Policy+Framework

Policy Type Implementation Query Result

policy_type_impls:
 - name: onap.policies.controlloop.operational.drools.Impl
 version: 1.0.0
 policy_type: onap.policies.controlloop.Operational
 pdp_type: drools
 description: Implementation of the drools control loop policies
 writable: false

 - name: onap.policies.controlloop.operational.apex.bbs.Impl
 version: 1.0.0
 policy_type: onap.policies.controlloop.operational.Apex
 pdp_type: apex
 description: Implementation of the APEX BBS control loop policy
 writable: true
 policy_body: "<policy body>"

 - name: onap.policies.controlloop.operational.apex.sampledomain.Impl
 version: 1.0.0
 policy_type: onap.policies.controlloop.operational.Apex
 pdp_type: apex
 description: Implementation of the SampleDomain test APEX policy
 writable: true
 policy_body: "<policy body>"

The table below shows some more examples of GET operations

Example Description

https:{url}:{port}/policy/api/v1/native/{policy type id}/impls

eg.
https:{url}:{port}/policy/api/v1/native/onap.policies.monitoring/impls
https:{url}:{port}/policy/api/v1/native/onap.policies.controlloop.operational.apex
/impls

Get all Policy Type implementations for the given policy type

https:{url}:{port}/policy/api/v1/native/{policy type id}/impls/{policy type impl id}

eg.
https:{url}:{port}/policy/api/v1/native/onap.policies. operational/implscontrolloop.
/onap.policies. operational.drools.implcontrolloop.
https:{url}:{port}/policy/api/v1/native/onap.policies. operational.apexcontrolloop.
/impls/onap.policies. operational.apex.sampledomain.implcontrolloop.

Get all Policy Type implementation versions that match the policy type
and policy type implementation IDs specified

https:{url}:{port}/policy/api/v1/native/{policy type id}/impls/{policy type impl id}
/versions/{version id}

eg.
https:{url}:{port}/policy/api/v1/native/onap.policies. operational/implscontrolloop.
/onap.policies. operational.drools.impl/versions/1.2.3controlloop.
https:{url}:{port}/policy/api/v1/native/onap.policies. operational.apexcontrolloop.
/impls/onap.policies. operational.apex.sampledomain.impl/versionscontrolloop.
/latest

Get the specific Policy Type implementation with the specified name
and version, if the version ID is specified a , the latest version is latest
returned

4.2.2 Policy Type Implementation Create/Update

The API allows users (such as a policy editor or DevOps system) to create or update a Policy Type implementation using a POST operation. This API
allows new Policy Type implementations to be created or existing Policy Type implementations to be modified. POST operations with a new name or a
new version of an existing name are used to create a new Policy Type implementation. POST operations with an existing name and version are used to
update an existing Policy Type implementations. Many implementations can be created or updated in a single POST operation by specifying more than
one Policy Type implementation on the list.policy_type_impls

For example, the POST operation below with the YAML body below is used to create a new APEX Policy type implementation.

https:{url}:{port}/ api/v1/ POSTpolicy/ /onap.policies. operational.apex/implsnative controlloop.

Create a new Policy Type Implementation

policy_type_impls:
 - onap.policies.controlloop.operational.apex.bbs.Impl:
 version: 1.0.0
 policy_type: onap.policies.controlloop.operational.Apex
 pdp_type: apex
 description: Implementation of the APEX BBS control loop policy
 policy_body: "<policy body>"
 - onap.policies.controlloop.operational.apex.sampledomain.Impl:
 version: 1.0.0
 policy_type: onap.policies.controlloop.operational.Apex
 pdp_type: apex
 description: Implementation of the APEX SampleDomain control loop policy
 policy_body: "<policy body>

Once this call is made, the Policy Type query in Section 3.1.2.1 returns a result with the new Policy Type implementation defined.

4.2.3 Policy Type Implementation Delete

The API also allows Policy Type implementations to be deleted with a DELETE operation. The format of the delete operation is as below:

https:{url}:{port}/api/v1/ onap.policies.apex.bbs.impl/versions/1.0.0 DELETE/onap.policies. operational.apex/impls/native controlloop.

Note: Predefined policy type implementations cannot be deleted
Note: Policy type implementations that are in use (Parameterized by a TOSCA Policy) may not be deleted, the parameterizing TOSCA policies must be
deleted first
Note: The parameter may be omitted on the DELETE operation if there is only one version of the policy type implementation in the systemversion

	TO BE DELETED - refer to Dublin Documentation

