
Microservices Bus Proposal(5/12/17)
Project Name:

Proposed name for the project: Microservices Bus
Proposed name for the repository: msbmsb.onap.org

Project Description:

Microservices Bus provide a reliable, resilient and scalable communication and governance infrastructure to support Microservice Architecture including
service registration/discovery, service routing and load balancing, timeout and retry, requests tracing and metrics collecting, etc. It's a pluggable

can plugin service provider options like AAF to provide Authentication & Authorization for APIs. Microservices Platform also provides a architecture so it
service portal and service requests logging, tracing and monitoring mechanism, etc.

Source codes are from OPEN-O and have already been used to support Microservice Architecture of OPEN-O for the vEPC and VoLTE use cases in its
two successful releases.

Note and Clarification:

We have reached consensus with OOM project that MSB and OOM manage service registry at 2 different levels, MSB at the micro/macro service
endpoint level vs OOM at the micro-service/component level, MSB will work with OOM to provide a comprehensive function.Service Registry

MSB provides a common infrastructure for ONAP services, no matter it's a "micro" service or a "macro" service. In this context, the term
"microservice" just means that the service's scope is highly organized around one business capability so it's smaller than "normal" service. Just
like micrcoservice, other services wich is "bigger" is also a process which needs to expose service endpoint to be accessed by its consumers. So
both "micro" and "normal" services need the service registration/discovery/routing/load balancing mechanism provided by MSB.

Scope:

Service registration
Registration via Restful API
Registration via portal
Registration via proxy
Note: Registration info is used for service request routing, the info including service name, service exposed url, version, service
instance endpoint(IP:Port), service protocol, service ttl, service load balancing method, etc.

Service discovery - Server side discovery
service request routing
service request load balancing

Service discovery - Client side discovery
client side discovery SDK

Service discovery - DNS
Discovery and load balancing by DNS server
Service consumer directly talk to service provider

Service Health Check
Note: The goal of service health check of MSB is to maintain the correct health status of service at endpoint level in the service registry
so the service consumer will not get a failed service provider instance, MSB try to kill and restart the onap component, which is doesn't
the scope of . OOM(ONAP Operations Manager)

Service API gateway
Client request routing
Client request load balancing
Transformation, such as https to http
Provide authentication & authorization for service request with plugin of auth service provider like AAF
Note: MSB itself doesn't provide auth service, which is provided by a auth service provider microservice such as AAF(Authentication and
Authorization Framework)
Service request logging
Service Request Rate-limiting
Service monitoring
Request result cache
Solve cross-domain issue for web application
Other functionalities with the pluggable architecture capability ...

Service API Portal
Provide a Service API Portal to expose all the ONAP Swagger format API descriptions
Don’t need to maintain an independent API Portal and API description documents – save money and time
Keep the consistency of the API document with the source code
Support multiple versions of APIs
Always get the latest API documents of the current development branch which is generated by CI/CD automatically
Provide self-service onboarding for developers

Client SDK
Service registration&discover client SDK
Service request client SDK

Service Mesh
MSB is planning to support Service Mesh in future release

https://wiki.onap.org/pages/viewpage.action?pageId=3246809
https://wiki.onap.org/pages/viewpage.action?pageId=3247151
https://wiki.onap.org/pages/viewpage.action?pageId=3247151

Architecture Alignment:

How does this project fit into the rest of the ONAP Architecture?

Please Include architecture diagram if possible

What other ONAP projects does this project depend on?
Integration
OOM

How does this align with external standards/specifications?
APIs/Interfaces - OpenAPI/Swagger
Information/data models - Swagger JSON or YAML models

Are there dependencies with other open source projects?
APIs/Interfaces - OpenResty, Consul, Redis, Istio
Integration Testing
etc.

This part was added yesterday and have not been discussed inside project yet, we will discuss it later and solve it inside project. Currently, this part is
considered one of the potential seed code, but it doesn't impact the scope of this proposal.

DME2 (Direct Messaging Engine)

DME2 provides encapsulated JMS via HTTP transport APIs that a Service provider instance can use to dynamically register its end point on service
provider startup and to unregister its end point when it shuts down. Service endpoints are persisted on the Cloud Data Store for the purpose of endpoint
dynamic discovery as the client requests are being routed.

blocked URL

DME2 also provides client API's to route Service requests based on data, partner or geographic affinities.The requests are effectively load balanced and
client requests can failover dynamically between the service endpoints.

DME2 Key Features

DME2 provides a robust set of features for any service provider implementation to utilize for inter-process client/server communication, including:

https://wiki.web.att.com/download/attachments/202348958/dme2-image.png?version=1&modificationDate=1350067760000&api=v2

1.

Fast-failover - Queuing the requests on server implementation is disabled by default, which allows the client to fast failover if a service provider is
consumed at its max capacity.
Dynamic Routing - The client requests will be routed to the DME2 service provider instances via routing made possible by the dynamic
registration of the service provider as instances become available
Affinity Routing - The client requests will be routed to the service provider by means of data, partner or geographic affinity depending on the
client requirements.
JMS API's - Provides standard JMS API implementation for destinations type as JMS Queues or Point-to-Point messaging
Async Request/Reply - Enables better use of resources by avoiding the traditional thread per request, thus supporting highly scalable service
provider implementation

**

MSB Use Cases:

Service registration per service provider instances
Registration
Service instances are registered to the registry by proxy or themselves. The visible scope should be indicated as a parameter when
register. If a service is only internal visible, the service information is only pulled by the internal gateway (aka router & load balancer) and
used by other components inside the system, the interal services can't be accessed by external systems or front end(web client). If a
service is visible to external system, the service information is pulled by the external gateway and can be accessed by external systems
and front end (web client) with auth.

Discovery & Service Consuming

For internal service consumers(Components inside ONAP system, such as A&AI, SO, Controller, etc.)
Client side discovery and load balancing

Server side discovery and load balancing

1.

2.

3.

For external service clients(OSS, BSS, Web client, etc.), access the service via external gateway

Service registration per service
The service may have its own load balancer built inside, for example, Kubernetes can create a load balancer for a service. In such case, only
need to register the service LB node to MSB, and the service request from the consumer is routed to the service LB node.

Registration

Discovery & Service Consuming

Note: Only show the client side discovery in this diagram for simplicity, it's also possible to use server side discovery by the internal
gateway.

Centralized Authentication&Authorization via MSB plugin
MSB is a pluggable architecture, so it can provide centralized authentication & authorization for service request with plugin of auth service
provider like AAF.

3.

Resources:

Primary Contact RamKoya, HuabingZhao, Al Hua, Sanjay Agraharam, Brijesh Khandelwal
Names, gerritIDs, and company affiliations of the committer

Name Gerrit ID Company Email Time Zone

Ram Koya AT&T rk541m@att.com Dallas, USA. CST/CDT

John Murray AT&T jfm@research.att.com Bedminster, USA EST/EDT

Dominic Lunanuova AT&T dgl@research.att.com MiddleTown, USA EST/EDT

Chengli Wang CMCC wangchengli@chinamobile.com Beijing, China. UTC +8

Tao Shen CMCC shentao@chinamobile.com Beijing, China. UTC +8

Zhaoxing Meng Zhaoxing ZTE meng.zhaoxing1@zte.com.cn Beijing, China. UTC +8

Huabing Zhao HuabingZhao ZTE zhao.huabing@zte.com.cn Beijing, China. UTC +8

Yonggang Wang ZTE wang.yonggang131@zte.com.cn Beijing, China. UTC +8

Tang Hua ZTE tang.hua52@zte.com.cn Beijing, China. UTC +8

Brijesh Khandelwal Tech Mahindra kbrijesh@TechMahindra.com CDT, USA.

Hailong He ZTE he.hailong5@zte.com.cn Beijing, China. UTC +8

Jian Ming jianming ZTE jian.ming@zte.com.cn Beijing, China. UTC +8

Leibo Huang ZTE huang.leibo20@zte.com.cn Beijing, China. UTC +8

Hu Rui ZTE hu.rui2@zte.com.cn Beijing, China. UTC +8

Jinquan Ni ZTE ni.jinquan@zte.com.cn Beijing, China. UTC +8

Bala IBM balasman@in.ibm.com Middletown, NJ. EDT/EST

Names and affiliations of any other contributors

Name Gerrit ID Company Email Time Zone

Jochen Kappel IBM jochen.kappel@de.ibm.com

Project Roles (include RACI chart, if applicable)

Other Information:

link to seed code
https://gerrit.open-o.org/r/gitweb?p=common-services-microservice-bus.git;a=tree;h=refs/heads/master;hb=refs/heads/master
git clone https://gerrit.open-o.org/r/common-services-microservice-bus
https://github.com/att/dme

link to API documentation
Microservice Bus API Documentation
https://github.com/att/DME/blob/master/Readme.md
Vendor Neutral
All proprietary trademarks, logos, product names, etc. have been removed.
Meets Board policy (including IPR)
Yes

Use the above information to create a key project facts section on your project page

mailto:rk541m@att.com
mailto:jfm@research.att.com
mailto:dgl@research.att.com
mailto:wangchengli@chinamobile.com
mailto:shentao@chinamobile.com
mailto:meng.zhaoxing1@zte.com.cn
mailto:zhao.huabing@zte.com.cn
mailto:denglingli@chinamobile.com
mailto:denglingli@chinamobile.com
mailto:kbrijesh@TechMahindra.com
mailto:he.hailong5@zte.com.cn
mailto:jian.ming@zte.com.cn
mailto:huang.leibo20@zte.com.cn
mailto:hu.rui2@zte.com.cn
mailto:ni.jinquan@zte.com.cn
mailto:jochen.kappel@de.ibm.com
https://gerrit.open-o.org/r/common-services-microservice-bus
https://gerrit.open-o.org/r/common-services-microservice-bus
https://github.com/att/dme
https://wiki.onap.org/display/DW/Microservice+Bus+API+Documentation
https://github.com/att/DME/blob/master/Readme.md

Key Project Facts

Project Name:

JIRA project name: Microservices Bus
JIRA project prefix: MSB

Repo name:
Lifecycle State: Incubation
Primary Contact: RamKoya, HuabingZhao, Al Hua, Sanjay Agraharam, Brijesh Khandelwal
Project Lead: Huabing Zhao zhao.huabing@zte.com.cn
mailing list tag [msb]
Committers:

please refer to the above table

*Link to TSC approval:
Link to approval of additional submitters:

	Microservices Bus Proposal(5/12/17)

