
API Fabric Project
Update September 2019: A PoC for demonstrating the capabilities of API Fabric is being
developed. This will be demonstrated by mid-September. Please refer to the child page for details.

Update October 2019: API Fabric proposal is put on hold and to be revisited after the Frankfurt release cycle.

--

Supported Operators: Vodafone, Swisscom (In discussion with other Operators)

Project Name

Proposed name for the project: API Fabric
Proposed name for the repository: apifabric

Project Goal

Component for managing high-level APIs exposing the business logic of ONAP. Handles API management including the API Lifecycle, API Monitoring, API
Security and Policy Control, API Transaction Logging, API Abstraction, and Transformation. Currently, there is a module in the MSB project with name
Internal/External API Gateway. There is also an External API project. with the responsibility to integrate ONAP with OSS/BSS Solutions through TMF
APIs. The proposed functionality should not be confused with what MSB or Ext-API is providing as of today and suggested to check the comparison below
with Ext-API and MSB.

Background

ONAP today has many components/projects and many APIs exposing functional capability of components. There are dedicated components which
manage API transformation between internal and external systems - such as Ext-API, Multi-Cloud, SDNC/App-C etc. There are also projects which
compose functionality and expose low-level APIs (which are focused on exposing component specific management/functional interfaces). Most of the
times, such low-level APIs are very complex to manage and consumer (such as other components in ONAP, external applications, use case specific
applications etc.) needs to be aware of very minute details (version, certificate, authentication, the right entity to be operated on, etc) of the provider to use
the APIs in the right sequence and with the right information. This often leads to the tight dependency between components and additional overhead for
project teams. There is no logical layer which consolidates these APIs and exposes a façade that is consumer friendly and hides many complexities
associated with component level functional APIs. The need for such a facade layer has been discussed many times in the past in relation to the Modularity
and also to make ONAP production ready/standard compliant etc. The API GW Project is proposed to address the following problem statements

Different API Management approaches: In ONAP each component exposes own APIs corresponding to the functionality supported. In addition
to this, each project follows different approaches for API security, API documentation, and moreover API style itself (entity based, action based
etc). This creates a lot of burden for the API consumer, especially use case developer who is focused on the high-level functionality to be
leveraged than component level API intricacies (version, security, style, etc.). There should be consistency across components in defining APIs or
there should be a logical layer (Facade) which hides these inconsistencies/complexities so that the API consumer need not build different set of
adaptors or require different expertise to consume the component level APIs.
Standard Alignment is a priority in ONAP: In recent releases, standard interface and model alignment became a hot topic of discussion.
Currently, standard API alignment is addressed by individual projects independently depending on specific use cases. There is also the redundant
implementation of adaptors – for example, SOL005 API adaptor proposed for SO/Ext-API , SOL003 API Adaptor in SO for S-VNFM connectivity,
SOL003 adaptor development in VFC, SOL005 adaptor development in VFC NFVO, SOL003 adaptor in SDNC and , etc. SOL002 adapter in SO
There should be a consistent adaptation layer that can be consumed by internal and external API consumers so that maintenance and
compliance of the APIs can be managed well.
Production deployments require interoperability with legacy and 3rd Party components: In typical production deployment of ONAP, it will
require integration with legacy and 3 Party applications in the operator premise. Currently, the expectation is that System Integrator responsible rd

for the deployment build appropriate integration layer and enable interoperability with such external applications. But this is not a healthy and
consistent solution as ONAP component level interfaces evolve over releases and for applications, this becomes unmanageable as these ONAP
interface APIs have some times release specific dependency and non-backward compatible. There should be a logically centralized function in
ONAP which can abstract component level API evolution and expose a higher level API as well hides the dynamics at the individual component
APIs. Additionally, integration with 3rd party applications in productions environment might require different types of policy enforcement, different
types of adaptations. In production deployments, ONAP components may not be compatible with operators IT systems - for example, the
operator might already have an Identity Provider and Auth Provider which are not compatible with AAF. Such scenarios might require additional
capability in ONAP where these incompatibilities can be accommodated rather than instrumenting each ONAP project. Another requirement is
related to Modularity - Not all components in ONAP might be required in the Operator production environment, depending on the evolutionary
stage of transformation. They might have already procured redundant functions as in ONAP that fulfill the use case requirements. This leads to a
requirement where different ONAP components (not in full but selectively) need to be composed at different levels of abstractions and integrated
with existing solutions. One such scenario is Legacy NFVO integration with ONAP as discussed in the Orchestration Scenarios task
force- Similar requirement would require special integration which if handled at individual ONAP project may soon become unmanageable.
Evolution of platform functional capability vs use case based functional enhancements : This is a typical problem in most of the open
source projects - the area the project should focus – i.e. to focus on developing functional capability and make it more generic for any use case to
adapt or to enhance functional capability based on specific use cases. In ONAP the functional capability of projects is primarily driven by use
cases. The requirements for each use case might be different or might require a different level of capability enhancements at the project level. For
project teams, this creates lot of pressure to balance requirements across use cases and also to focus on progressing the functional capability for
long term requirements. There should be a logical boundary where both such requirements - from use case or from project functional
enhancement – should balance. The boundary should be an API layer which cushions the impact and hides the project level evolutions at the
same time supports current and future use cases.

Project Description

https://wiki.lfnetworking.org/download/attachments/15630468/ONAP_DDF_VNF_Application_Configuration.pdf?version=1&modificationDate=1560349322264&api=v2

The proposed project – API GW, acts as an API broker between external/internal components in ONAP and provides logically centralized API
management and control capability.

API GW closely works with three components in ONAP – Ext-API ,
MSB and DMaaP. API GW can provide a proxy interface to Ext-API

project and enable secure connection, Federation, Policy enforcement, load balancing, and overall API Management capability. API GW can enhance the
capability of MSB with built-in plugins that enhance MSB to have capabilities such as API LCM, Marketplace, API Catalog management, Analytics, RBAC,
Security Management, API Aggregation and Composition, Script insertion, Expression language support, etc. API-GW can act like a DMaaP client and
expose notifications to external applications through a subscribed hub resource.

This proposal does not intend to replace any of the existing components/functionality in ONAP. Some of the redundant functionality that exists
between API GW and ONAP Components such as Ext-API and MSB can be managed through collaboration and mutual agreement. API GW can
also potentially be a subproject of either Ext-API or MSB to augment the missing capabilities in respective projects. Another potential option is
to merge functionality in Ext-API, MSB, and API-GW to create a single API Management/Adaptation component.

Please note the comparison of API GW and existing ONAP projects like Ext-API and MSB below. The comparison also covers what additional
capability API GW bring in to augment the existing functionality. As for this proposal, the directions provided by Architecture committee and
TSC will be followed once the need for such functionality is agreed with all stakeholders.

How API GW Solution solves the problems stated?

Different API Management Approaches: Logically Centralized API GW component enables consistent approach for managing APIs without the
need to develop redundant API Adaptor, hiding a variety of approaches followed by different ONAP components
Standard Alignment: API GW support rich transformation capability with inbuilt plugins and support for expression language that can be
configured on demand rather than developing from scratch (and subsequently waiting for a long release cycle.)
Production deployments might require interoperability with legacy and 3rd Party components: This is an inherent capability of API
GW. API GW allows flexible integration with external and internal systems with toolsets for HTTP Method conversion, HTTP Payload Conversion,
REST/SOAP transformation, JSON/XML transformation, JSON to JSON transformation, Different types of security mechanisms, etc. API GW
can expose Façade APIs which compose the internal functionality of ONAP at desired levels of complexity.
Evolution of Platform functional capability vs. Use Case capability: Helps in creating abstraction layer or Façade as needed for different use
cases, allowing the projects to evolve independently

Architecture

1.

2.
3.

4.

5.

6.

7.

8.

9.

10.

11.
12.
13.
14.
15.
16.

API GW consists of four main building blocks – Gateway, API GW Management Component, API GW Configuration store, API GW UI. Gateway function is
a stateless reverse proxy which can be instantiated on demand, scaled and distributed. It hosts a set of plugins that enhance the API control logic. The
plugins are developed using the gateway SDK and attached as a library during the initialization. Gateway and Plugins refers the API configuration (i.e
information about the on boarded API) from Configuration and Analytics data store. The Configuration & Analytics DS persists the API configuration and
API transactional metrics. API GW can work with an inbuilt Auth provider capable of centrally managing the Authentication, Authorization of the exposed
APIs. The API GW UI hosts the Management, Design and Monitoring UIs. The GW function maintains statistics and log information of APIs and stores the
information in the Configuration and Analytics store. It is also possible to integrate the Configuration and Analytics Store with external monitoring solutions
like Prometheus or alert engines to notify external consumers about API statistics.

Scope

Following are the proposed capabilities

API LCM: Manage the lifecycle of API – Onboarding of APIs as swagger or equivalent templates, Design of APIs with context path and backend
endpoints, Association of API with required plugins to control runtime behavior, Activation or Deactivation of API, Management of Security
aspects of the API
API Market Place, API Catalog Management: Provide a consumer-friendly and developer friendly API Management interface
Plan, Subscription Management: Ability to design API plans with different levels of control and provide management interface to subscribe to a
particular API and approve the specific subscription.
Content/Payload based API routing: Currently MSB in ONAP Supports API routing based on Service endpoints, but not strictly based on the API
payload or API headers. This is an augmented capability on top of MSB to be consumed by use case teams and projects so that any custom
routing can be incorporated at the API layer rather than at the individual project level.
API Federation: Currently there is no consistent mechanism for federation between two ONAP instances at least at the API layer. This capability
allows projects to leverage API GW as a gateway that manages communication between multiple instances of ONAP. Note that this capability
only covers the
Consistent Security Management: Manage API security– primarily transactional security – Authentication, Authorization, Encryption.
Authentication and Authorization is planned to be based on a pluggable model, i.e capability to integrate with the Auth Provider IDP within the
operator premise or reuse capabilities provided by AAF. Encryptions is enabled through HTTPS based secure channel – for this API GW
maintains a keystore and truststore (PKCS12 based stores) with certificates signed by an authorized signing authority. API GW supports
Authorization/Authentication based on OAuth 2.0, Open ID Connect, SCIM 2.0, etc.
Circuit Breaking, Timeout, Retries, and Rate Control: Capability to control the API consumption by tuning the APIs usage properties. These
capabilities may be controlled on demand using the management APIs exposed by API GW.
Flexible Request and Response Transformation: Capability to transform the API payload (request or response) based on predefined
transformation logic – The transformation logic can be implemented as plugin and can be configured at runtime using exposed properties. The
transformation plugin may also support expression languages (such as JOLT) or script insertion to transform the request or response. Other
transformation capabilities include header, URL transformation, XML/JSON payload transformation, Request Method transformation, Security
mechanism transformation etc.
API Sharding (Targeted API Deployment) : Targeted deployment of APIs at distributed API GW Instances based on specific criteria – i.e
geographic proximity, load etc.
Service Discovery: Discover the API endpoints (backend Service APIs) based on registry look up and load balance the request across discovered
services.
Façade: Aggregate/Compose complex low-level APIs and expose simplified façade APIs associated with service endpoints
API Policy Enforcement: Define API control policies – security or run time behavior
Common look and feel and documentation: Ensure common look and feel, documentation for exposed ONAP APIs
API Metrics Collection, Analytics, Metering, Audit, Logging: Capability track all the API transactions and identify the usage pattern, traffic
Alerts: Enable API consumption specific alerts so that corrective actions can be carried out on-demand.
White Listing, Black Listing of APIs based on the Subscription profile, Policy

17. API Designer: a Designer tool to import swagger APIs, attach appropriate policies associated with API, commission and decommission APIs,
manage subscriptions and plans

Short Term Capabilities (Proof of concept and first release after completing PoC):

Capability marked in Blue (To be prioritized)

Long Term Capabilities:

Rest of the capabilities not covered in Short Term

Architecture Alignment

Potential placement of API GW in ONAP Architecture

Option 1: Co-exist with Ext-API , but may support external and internal APIs on need basis

Option 2: Co-exist with MSB, but handles gateway functionality independently. MSB handles the Registry and Service Discovery.

Option 3: API GW exists as an independent functional component

API GW and External API:

Exiting Capabilities in Ext-API :
Mediation/Adaptation between TMF APIs and ONAP internal APIs
Leverages JOLT JSON Transformation Templates for Payload transformation
Order State Monitoring – Hub Resources Management for callbacks
Repository for Service Specification Catalog , Service Order Mapping details
Leverages SDC JTOSCA Parser for TOSCA Parsing
Static transformation logic and routing implemented in code

Capabilities Augmented by API GW Solution
Management toolsets for configuring API context and endpoint
API Analytics
Full API Lifecycle Management – Onboard, Policy Control, retire, WL,BL
API Subscription/Plan management
API Policy management
Enhanced API Security Management – OAuth2, JWT,
Open ID, SCIM 2.0 – All inbuilt and centrally managed
Script insertion in API execution flow
Configurable APIs, Transformation logic than static Code
Pre-built API Processing plugins
API Aggregation and Composition

Swagger Import and Plugin chaining
Management and Monitoring UI

API GW and MSB:

Existing Capabilities in MSB
API Endpoint Registration and Discovery
Static API Endpoint Routing based on port and Service URL (No payload-based routing)
API Load balancing
Service Mesh Integration Prototype
Integration with AAF for security policy enforcement (?)
Integration with OOM for dynamic Service Registration
Management APIs for registration of Services

Capabilities Augmented by API GW Solution
Full API Lifecycle Management
Manual and Bulk API Import – Swagger or Management API
API Subscription/Plan management, API Discovery
API Catalog and Marketplace
Integration with multiple external IDP, Monitoring solution
Rate Limit, Quota Mgmt , Circuit Break
Tenant, Role Management
Whitelisting , Black Listing
Enhanced API Security Management – OAuth2, JWT,
Open ID etc. – All inbuilt and centrally managed
Script insertion in the API execution flow
Configurable APIs, Transformation logic
API Aggregation and Composition
Management and Monitoring UI

Benefits for ONAP

Support a single source of truth for High level APIs, rather than each project maintaining own versions
Augments MSB and Ext-API capabilities
Facade layer: Enables development of a Facade layer which abstracts the complexities of internal API
Request/Response Transformation: Enables ONAP components to align with SDO APIs more easily without changing the existing capabilities
Low impact on existing projects: Enable Operators to plugin standard and legacy integration API adaptors without impacting the ONAP
components
Allows Projects/Components to focus on core functionality rather than worrying about API Transformation
Enables Tenancy/RBAC Management: Centralized API management can help in the implementation of tenancy management through policies.

How does this project fit into the rest of the ONAP Architecture?
API Gateway provides an API and UI interface. API can be used by components in ONAP or by administrative users to manage the lifecycle of
high-level APIs. UI is primarily intended for an administrator to provision and manage APIs. The UI is also suitable for the end user as the API GW
provides a consumer view – API Marketplace which can be used to subscribe to specific APIs.
What other ONAP projects does this project depend on?
OOM for deployment, MSB or Specific ONAP components whose APIs need to be abstracted behind a façade API (standard API), AAF for
Security – Authorization, Authentication and Certificate Management
In Relation to Other ONAP Components

External API
MSB

How does this align with external standards/specifications?

APIs/Interfaces - REST, JSON, XML
Information/data models - Swagger JSON

Are there dependencies with other open source projects?

MongoDB
Gravitee/Kong/Gloo
Elastic Search

Other Information

link to seed code (if applicable)

NA

Vendor Neutral

NA

Meets Board policy (including IPR)

NA

Note on Open Source Solution:

Plan to develop Project PoC using the Gravitee API Gateway () Solution which is cloud-native, developer-friendly and features https://gravitee.io/
rich. However, we are also open for adapting other API GW solutions such as Kong or Gloo. Kong () is based on Nginx & OpenResty and link
have similar capabilities like Gravitee but requires the extension/plugins to be written in unpopular Lua script, additionally, it has limited
reusable libraries to be used for developing plugins. Gloo () is a project endorsed by CNCF and has a https://github.com/solo-io/gloo
dependency on Envoy proxy, so can be considered when ONAP migrates to a service mesh based microservice communication model.
Following is a high-level comparison (Note: our current subjective view based on the scope defined above) of different API GW solutions that
we have evaluated. Inputs/suggestions are welcome from community members on other alternate open source solutions that we can leverage
with friendly licensing terms.

Note on S3P :

Scalability: Depends on the particular open source solution being selected - Majority of the open source API GW solutions support distributed
scaling.
Security: To be discussed with the Security Subcommittee - API GW inherently supports rich security management features - OAUTH2.0, Open
ID Connect, Certificate management etc.
Stability: All the proposed features are from mature API GW open source solutions which are in the production environment. Guidance from
Architecture team on specific areas awaited.
Performance: For API GW two aspects of performance is critical - Latency and Num of Requests per Second. Latency depends on the complexity
of API and associated nested operations that need to be carried out for a particular API. The number of requests handled by API GW depends on
the scalability features provided by the API GW. Performance benchmark can be carried out based on the requirements set by the S3P team or
specific use cases.

Key Project Facts

Facts Info

PTL (first and last name) TBD

Jira Project Name APIGateway

Jira Key APIGATEWAY

Project ID apigw

Link to Wiki Space TBD

Release Components Name

Note: refer to existing on how to fill out this tableproject for details

Components Name Components Repository name Maven Group ID Components Description

apigw apigw org.onap.apigw Component for API Design, LCM , Monitoring, Control

Resources committed to the Release

Note 1: No more than 5 committers per project. Balance the committers list and avoid members representing only one company. Ensure there is at least 3
companies supporting your proposal.

Note 2: It is critical to complete all the information requested, that will help to fast forward the onboarding process.

https://gravitee.io/
https://docs.konghq.com/?_ga=2.142880694.2029347747.1557150174-473158052.1555921534&_gac=1.48423508.1557062231.CjwKCAjwk7rmBRAaEiwAhDGhxOUaN6sNoiOrVwNcgjMWo2zqwaKG5E5XYtbJCyeaR1iTrkA4oy44oBoCMMYQAvD_BwE
https://docs.konghq.com/?_ga=2.142880694.2029347747.1557150174-473158052.1555921534&_gac=1.48423508.1557062231.CjwKCAjwk7rmBRAaEiwAhDGhxOUaN6sNoiOrVwNcgjMWo2zqwaKG5E5XYtbJCyeaR1iTrkA4oy44oBoCMMYQAvD_BwE
https://github.com/solo-io/gloo
https://wiki.onap.org/display/DW/Resources+and+Repositories

Role First Name Last Name Linux Foundation ID Email Address Location

PTL TBD

Committers Manoj Nair (NetCracker) Mknair75 manoj.k.nair@netcracker.com Bangalore, India, GMT+5:30

Ramesh Iyer(NetCracker) Bangalore, India, GMT+5:30

TBD

TBD

TBD

Contributors

Abinash Vishwakarma (NetCracker)

Andrei Chekalin (NetCracker)

mailto:manoj.k.nair@netcracker.com

	API Fabric Project

