
Commit Messages

Overview
Commit Structure
Approach
Do
Don't
In case of wrong commit message
OOM Specific case
References

Overview
The following is based on OPEN-O experiences and multiple in the open source community.references

There are tons of reasons on why it is essentials to write good commit messages. For the sake of keeping things short, here are 3 reasons:

ONAP is , so everything you do is widely visible. As you are of your work, you want to make good .public proud impressions
It the reviewing process.speeds up
It helps to write good .Release Notes

Which Commits would you rather read?

1.

2.

3.

Info

ONLY 1 JIRA issue per commit.

Think about this scenario: a developer performs a Commit for
1 new functionality and 4 bugs.

Then, here are the problems:

It is difficult for the reviewer to understand which
code relates to which issue.
It takes the reviewer more time to review. You may
even discourage the reviewer to look at the code
submission.
In case 1 bug is not properly fix, then the whole
commit is rejected.

Info

Self-commits are allowed.not

 NEVER embed binary files including jar, war, tar, gz,
gzip, zip in Gerrit

Reference

To submit code into Gerrit , multiple on an unfinished feature
times to bring transparency and get early feedback , refer to "

"Submitting a Draft Feature

https://wiki.onap.org/pages/viewpage.action?pageId=48534379#CommitMessages-CommitProcessReference
https://wiki.onap.org/display/DW/Configuring+Gerrit#ConfiguringGerrit-Submittingadraftfeature

Commit Structure

Approach
To formulate good commit message focus is these 3 points:

Explain the What, the Why and the How.
What: Do not assume the code is self-evident/self-documenting. The commit message should have a as to what clear statement
the is.original problem
Why: It may fix a bug, it may add a feature, it may improve performance, reliability, stability, or just be a change for the sake of
correctness. Describe the overall code structure, particularly for large changes, but more importantly describe the intent/motivation
 behind the changes.
How: Describe how the problem being fixed. Describe any limitations of the current code. For short obvious patches this part can be
omitted, but it should be a high level description of what the approach was.
The the amount of code being changed, the it is to review & identify potential .smaller quicker & easier flaws

Keep in mind than within a 3 months, you may have to review your code.own

Do
Write the summary line and description of what you have done in the , that is as if you were commanding someone. Start imperative mode
the line with a , , instead of Fixed, Added, Changed.VERB Fix Add Change
Always leave the .second line blank
Keep the summary line characters.shorter than 50
Keep the body line . Make as much paragraph as you need.around 72 characters
One commit per change.
List issue addressed, (not a list of issues).THE

Don't
Don't terminate the summary line with a - it's a title and titles don't end with a period.period
Don't use in the message. They are useless.! or !!
Don't provide the . Use External Reference section to list the Jira issue.issue number in the summary ONE
Don't mix two functional changes. Idea is to divide to conquer. Think about the reviewer who must desiccate with issues he faces. unrelated
Think about how easy it will be in case you have to revert code.
Don't include together with code changes. Make 2 separate commits.whitespace changes
Don't include comments like " "patch set-specific Patch set 2: rebased

In case of wrong commit message
There is always a possibility to change to commit message before the code is merged.

You simply have to enter the command line: git commit --amend

This method is applicable only for the latest change.

OOM Specific case
As OOM is the installer, it receives merge requests from all ONAP components. It's therefore important to understand from which component it comes
and what's the specific changes it comes from.

Therefore, the commit message (on OOM) follow this form:must

[NAME_OF_COMPONENT|DOC|COMMON|GENERIC] Meaningful title (from OOM side)

at least one sentence explaining the change done in this patch, cause and consequences and possibly more of
course

Issue-ID: AS_WE_ARE_FORCED_BUT_MEANINGLESS
Change-ID: xxx
Sign-off: xxx

Commit message will be the last stuff that will stay with our code so it must clearly explain the changes, the "why" and the consequences. If it change
OOM behavior in any way, documentation be also updated.must

Merge requests which are not following this pattern will not be merged.

Please read the following pages and follow the guidelines for writing commit message contained therein.

http://bit.ly/goodcommitmessages
http://who-t.blogspot.com/2009/12/on-commit-messages.html
http://dep.debian.net/deps/dep3/

As you can see, most of the change is to declare which componentn is impacted by this change

References
How to Write a Git Commit Message. Very inspiring, I particularly like this sentence What may be a hassle at first soon becomes habit, and
eventually a source of pride and productivity for all involved.
OpenStack Git commit Good Practices
Commit Message Good Practices
Writing Good Commit Messages
On Commit Message

http://bit.ly/goodcommitmessages
http://who-t.blogspot.com/2009/12/on-commit-messages.html
http://dep.debian.net/deps/dep3/
http://chris.beams.io/posts/git-commit
https://wiki.openstack.org/wiki/GitCommitMessages
http://www.slideshare.net/TarinGamberini/commit-messages-goodpractices
https://github.com/erlang/otp/wiki/writing-good-commit-messages
http://who-t.blogspot.com/2009/12/on-commit-messages.html

https://gerrit.onap.org/r/Documentation/user-upload.html#push_replace (Thanks Geora)

https://gerrit.onap.org/r/Documentation/user-upload.html#push_replace

	Commit Messages

