
Continuous Integration
The core goal of Continuous Integration is to get fast feedback.
Continuously ensure that your code passed you have not broken AND
something else:

Essentials Practices:

Don't check In on a broken build: The cardinal sin of continuous
integration is checking on a broken link. If the build breaks, the

 are for fixing it. They identify the developers responsible
cause of the breakage as soon as possible and fix it.
Always run all commit tests locally before committing, or get
your CI server to do it for you: Performing a local sanity check
before committing in the main branch. It is a way to ensure that
what we believe to work actually does. Before committing, refre

 by updating from version control system. sh the local copy
Wait for commit tests to pass before moving on: As a developer
you are responsible for the build. Before moving to something
else (new dev, lunch, meeting) paid attention to the build. If the
build fails, or reverse your changes.fix it immediately
Never go home on a broken build: if it is 5:30 pm on a Friday
and have a broken build you 3 choices: Admit you will stay late
tonight and fix the build. Revert your change and you can leave
the office within 5 minutes, or leave the office now and leave
the build broken. Be sure to understand: Monday your name
will be .MUD
Always be prepared to revert to the previous release: We are
all humans and make mistakes and we expect everyone will
break the build from time to time. If for any reason you cannot
quickly fix the build now, you should to the previous revert
stage in the version control system.
Time-box fixing before reverting: establish a team rule: when
the build breaks on check-in, try to fix it for the next 10 minutes.
If, after 10 minutes you have not fixed the build, REVERT back
to previous working version.
Don't comment out failing tests: this push you on a slippery

. When a test that has been passing for a while begin to road
fail, it can be hard to work out why. Is it really a regression? Or
one of the assumption of the test is no longer valid. Whatever
the reasons, you have to either fix the code (in case of
regression found), modify the test (if one assumption has
changed) or delete the test (if the functionality under test no
longer exists).
Take responsibility for all breakages that result from your
changes: if you commit a change and the tests you wrote pass,
but others break, the build is still and it is respBROKEN YOUR
onsibility to fix it.
Integration test - changes to repos that span ONAP like
integration, demo, oom - a full heat/k8s deployment and
minimum set of robot/rest calls should be run to verify that the
deployment under change has not regressed.
Practice Test-Driven Development: the only way to get
excellent unit test coverage. Idea is to that is first create a test
an executable specification of the expected behavior of the
code to be written and then only write the code (this practice
helps to drive the application design, the test serves for
regression testing)

Info

 NEVER embed jar, war, tar, gz, gzip, zip in Gerrit

1.

2.

3.

4.

5.

Tips

If there is 1 word to remember "Commit, commit,
commit" multiple times a day
CI Practice must be in place around release
planning review
Build Time: it should not take hours to generate a
build. If it takes hours, then something is wrong and
has to be fixed. A practice is to get a build in less
than 3 minutes.
Watch the dependency diagram. You don't need to
rebuild all the code for each build.
To get started on Jenkins, go to Getting Involved,
Configuring Jenkins

References

The content presented in this page is a very high
level summary of "Continuous Delivery" book by Jez
Humble and David Fairley
To submit code into Gerrit on an unfinished feature,
multiple times to bring transparency and get early
feedback , refer to "Submitting a Draft Feature"
Auto Continuous Deployment via Jenkins and Kibana

https://wiki.onap.org/display/DW/Jenkins+-%3E+Configuring+Jenkins+Jobs
https://wiki.onap.org/display/DW/Jenkins+-%3E+Configuring+Jenkins+Jobs
https://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
https://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
https://wiki.onap.org/display/DW/Configuring+Gerrit#ConfiguringGerrit-Submittingadraftfeature
https://wiki.onap.org/display/DW/Auto+Continuous+Deployment+via+Jenkins+and+Kibana

	Continuous Integration

