
1.
2.
3.

Converting a Cloudify Plugin to Support Both Python2 and
Python3

Background
The Conversion Process
Make Sure that Python2 Tests Work
Conversion to Both Python2 and Python3

Step 1: Create a Python3 Version of Your Files
Step 2: Merge the Two Versions

Preparatory Statements
Changing the #ifndef/#else/#endif Statements
Import Statements
Standard Library Differences
Octal Constants
has_key() vs 'in'
Print Statements vs Print Functions
Dictionary .keys() and .items() Return Iterators in Python3
Additional Differences
Clean Up Preparatory Statements

Make Sure that Python2 AND Python3 Tests Work
What to do When Python3 Tests Fail

Background
Cloudify currently is built on top of Python 2.7. Formal support of Python2 has been scheduled (for the past 5 years) to go away on 1/1/2020.

Cloudify will be coming out with a version of the cloudify manager that runs on Python3 in 4Q2019. As part of this, they will need to convert all of their
plugins to also run on Python3.

Unfortunately, any plugins that we have also need to be converted to Python3 in order to run on the new platform.

The Conversion Process
To prepare for this, we need to also convert our plugins to run under Python3. However, because of the timing we also need the code to continue running
under Python2. To do this, we will follow these steps:

make sure tests run under Python2
convert code to be compatible with both Python2 and Python3
make sure tests continue to run under Python2 AND Python3

Make Sure that Python2 Tests Work
Before any conversion is done, make certain that you have tests for your code.

Many of the plugins are already set up with tox-based tests; these MUST be able to be run.

If tox-based tests do NOT exist, they should be created or an alternative form of testing platform needs to be provided.

The key point is: you need to have tests that can be run on your plugin code that is SEPARATE from it being run on a cloudify manager. That is, make
certain that " " runs cleanly for Python2.tox test

Conversion to Both Python2 and Python3
There are a number of ways that this step can be accomplished. This is one way that seems to work fine:

Step 1: Create a Python3 Version of Your Files

Python3 comes with the command. Use the command with the option to create a Python3 version of each file:2to3 2to3 -w

$ 2to3 -w *.py

For each file where differences were found that needed to be made, you will now find both a .bak file and an updated file. If there are no

$ ls -l *.py*
-rw-r--r-- 1 th1395 th1395 3965 Sep 14 2018 ecomp_logger.py
-rw-rw-r-- 1 th1395 th1395 490 Jul 23 19:34 __init__.py
-rw-rw-r-- 1 th1395 th1395 483 Jul 23 19:33 __init__.py.bak
-rw-rw-r-- 1 th1395 th1395 2597 Jul 23 19:34 logginginterface.py
-rw-rw-r-- 1 th1395 th1395 2590 Jul 23 19:33 logginginterface.py.bak
-rw-rw-r-- 1 th1395 th1395 28763 Jul 23 19:34 pgaas_plugin.py
-rw-rw-r-- 1 th1395 th1395 28738 Jul 23 19:33 pgaas_plugin.py.bak

Now rename each of your files that had differences to use " " extensions:.py3

$ for i in *.py;do if [-f $i.bak]; then mv $i ${i}3;fi;done

Step 2: Merge the Two Versions

For each file, you will now create a file that has BOTH the Python2 AND the Python3 code present, with the differences clearly marked. The Linux .py3
GNU diff command has a nice facility to do this:

$ for i in *.py3;do b=$(basename $i .py3); diff -DUSING_PYTHON2 $b.py.bak $b.py3 > $b.py;done

Your files will now have a series of blocks that look like this, using C preprocessor syntax:.py

NOTE: The sense of the "#ifdef/#ifndef" is backwards from what we really want,

but this will be dealt with in a later section below.

I've added annotated the lines further to make it clearer which lines are the python2 and which are the python3 code.

. . .

#ifndef USING_PYTHON2

from logginginterface import * # python2 code

#else /* USING_PYTHON2 */

from .logginginterface import * # python3 code

#endif /* USING_PYTHON2 */

. . .

#ifndef USING_PYTHON2

import urllib # python2 code

#else /* USING_PYTHON2 */

import urllib.request, urllib.parse, urllib.error # python3 code

#endif /* USING_PYTHON2 */

. . .

#ifndef USING_PYTHON2

 return urllib.quote(str(s), '') # python2 code

#else /* USING_PYTHON2 */

 return urllib.parse.quote(str(s), '') # python3 code

#endif /* USING_PYTHON2 */

. . .

#ifndef USING_PYTHON2

 os.umask(077) # python2 code

#else /* USING_PYTHON2 */

 os.umask(0o77) # python3 code

#endif /* USING_PYTHON2 */

. . .

#ifndef USING_PYTHON2

 if openstack.has_key('custom_configuration'): # python2 code

#else /* USING_PYTHON2 */

 if 'custom_configuration' in openstack: # python3 code

#endif /* USING_PYTHON2 */

. . .

#ifndef USING_PYTHON2

 print >>fp, binascii.hexlify(b).decode('utf-8') # python2 code

#else /* USING_PYTHON2 */

 print(binascii.hexlify(b).decode('utf-8'), file=fp) # python3 code

#endif /* USING_PYTHON2 */

. . .

#ifndef USING_PYTHON2

 debug("ctx node has the following Properties: {}".format(i.properties.keys()))

#else /* USING_PYTHON2 */

 debug("ctx node has the following Properties: {}".format(list(i.properties.keys())))

#endif /* USING_PYTHON2 */

. . .

#ifndef USING_PYTHON2

 for k, nv in want.items(): # python2 code

#else /* USING_PYTHON2 */

 for k, nv in list(want.items()): # python3 code

#endif /* USING_PYTHON2 */

. . .

These .py files are currently executable by NEITHER Python2 NOR Python3, so the next step is to deal with the differences to make them runnable by
BOTH.

There are some things allowed in Python2.7 that are mandated in Python3.
There are other things that can be done in just the Python3 form if the right settings are provided.
Or there are things that can be done in just the Python2 form.
There are things that must be done differently in the two languages, so a run-time choice is needed.

We will make use of each of these features.

Preparatory Statements

First step is to add these statements to the very top of each .py file:

from __future__ import print_function
import sys
USING_PYTHON2 = sys.version_info[0] < 3

If your file starts with a invocation statement, place those lines AFTER the shbang:.py #!

#!/usr/bin/env python
from __future__ import print_function
import sys
USING_PYTHON2 = sys.version_info[0] < 3

These lines do two things:

1.
2.

Allows the function version of the print statements to be used.
Gives us a value () that can be tested for at run time to determine if we are running Python2 or Python3.USING_PYTHON2

Changing the #ifndef/#else/#endif Statements

You need to change blocks such as this:

#ifndef USING_PYTHON2

some codepython2

#else /* USING_PYTHON2 */

some codepython3

#endif /* USING_PYTHON2 */

#ifdef USING_PYTHON2

 some codepython3

#endif /* USING_PYTHON2 */

to this. Make CERTAIN that the indentation is adjusted as well.

if USING_PYTHON2:

 some codepython2

else:

 some codepython3

if not USING_PYTHON2:

 some python3 code

Yes, there is some cognitive dissonance for changing "#ifndef" to "if", but the rest of the generated code is set up properly to be able to quickly edit the
code.

Search for all instances of " " and change " " to " " and add a trailing " ".#ifndef USING_PYTHON2 #ifndef if :
Search for all instances of " " and change that to "else:".#else /* USING_PYTHON2 */
Remove all instances of " " from the code.#endif /* USING_PYTHON2 */
Re-indent the lines in between.

You should also search for "#ifdef USING_PYTHON2" and change that to "if not USING_PYTHON2:".

Import Statements

The way that imports of functions found in local files changes in Python3. So change blocks such as this:

#ifndef USING_PYTHON2

from logginginterface import * # python2 code

#else /* USING_PYTHON2 */

from .logginginterface import * # python3 code

#endif /* USING_PYTHON2 */

to this. Make CERTAIN that the indentation is adjusted as well.

if USING_PYTHON2:

 from logginginterface import *

else:

 from .logginginterface import *

In some cases, standard library interfaces have changed. So change blocks such as this:

#ifndef USING_PYTHON2

import urllib # python2 code

#else /* USING_PYTHON2 */

import urllib.request, urllib.parse, urllib.error # python3 code

#endif /* USING_PYTHON2 */

to this. Make CERTAIN that the indentation is adjusted as well.

if USING_PYTHON2:

 import urllib

else:

 import urllib.request, urllib.parse, urllib.error

Multiple such import statements can be combined together, as in:

if USING_PYTHON2:

 from logginginterface import * # python2 code

 import urllib

else:

 from .logginginterface import * # python3 code

 import urllib.request, urllib.parse, urllib.error

Standard Library Differences

In some cases, library differences will be pointed out. Examples such as this:

#ifndef USING_PYTHON2

 return urllib.quote(str(s), '') # python2 code

#else /* USING_PYTHON2 */

 return urllib.parse.quote(str(s), '') # python3 code

#endif /* USING_PYTHON2 */

to this:

if USING_PYTHON2:

 return urllib.quote(str(s), '')

else:

 return urllib.parse.quote(str(s), '')

Sometimes this can also be done using an inline if statement, as in:

 return urllib.quote(str(s), '') if USING_PYTHON2 else urllib.parse.quote(str(s), '')

It is your decision as to which is more readable.

Octal Constants

In Python2, octal constants can be prefixed with either "0" or "0o". In Python3, "0o" is mandated.

Code can use the new form exclusively. Change this

#ifndef USING_PYTHON2

 os.umask(077) # python2 code

#else /* USING_PYTHON2 */

 os.umask(0o77) # python3 code

#endif /* USING_PYTHON2 */

to just the new form:

 os.umask(0o77)

has_key() vs 'in'

The has_key() method has been removed from Python3. Fortunately, the keyword works in both languages. So change thisin

#ifndef USING_PYTHON2

 if openstack.has_key('custom_configuration'): # python2 code

#else /* USING_PYTHON2 */

 if 'custom_configuration' in openstack: # python3 code

#endif /* USING_PYTHON2 */

to only use the keyword, as in this:in

 if 'custom_configuration' in openstack:

Print Statements vs Print Functions

The format of print statements have changed into functions in Python3. Because of the import statement we added in the above, we can Preparatory Steps
use the print function format everywhere. Change this:

#ifndef USING_PYTHON2

 print >>fp, binascii.hexlify(b).decode('utf-8') # python2 code

#else /* USING_PYTHON2 */

 print(binascii.hexlify(b).decode('utf-8'), file=fp) # python3 code

#endif /* USING_PYTHON2 */

to only use the function, as in this:print()

 print(binascii.hexlify(b).decode('utf-8'), file=fp)

Dictionary .keys() and .items() Return Iterators in Python3

In Python3, the dictionary and methods return iterators instead of lists. There are two cases to be considered. In some cases a list .keys() .items()
must absolutely be used, such as passing to a format conversion. So the iterator can be converted to a list. This can be simplified even further by noting
that converting a list to a list is a no-op, so the Python3 form of the code can be used in both languages. For example, change this:

https://wiki.web.att.com/display/ECOMPC/Converting+Cloudify+Plugins+to+Support+Python3#ConvertingCloudifyPluginstoSupportPython3-ConvertingCloudifyPluginstoSupportPython3-PreparatoryStatements

#ifndef USING_PYTHON2

 debug("ctx node has the following Properties: {}".format(i.properties.keys())) # python2 code

#else /* USING_PYTHON2 */

 debug("ctx node has the following Properties: {}".format(list(i.properties.keys()))) # python3 code

#endif /* USING_PYTHON2 */

to this:

 debug("ctx node has the following Properties: {}".format(list(i.properties.keys())))

When used in for loops, the two languages are compatible for the return of and . So the Python2 form of the code can be used in both .keys() .items()
languages. For example, change this:

#ifndef USING_PYTHON2

 for k, nv in want.items():

#else /* USING_PYTHON2 */

 for k, nv in list(want.items()):

#endif /* USING_PYTHON2 */

to just the Python2 form:

 for k, nv in want.items():

Additional Differences

All of the code samples above are meant to be examples of types of issues that have been discovered so far. Be sure to search the file for all instances of
 and fix each occurrence.#ifndef

If you discover additional types of changes that need to be discussed on this wiki pagr, please add them.

Clean Up Preparatory Statements

If there are no function calls in the code, this line can be removed from the at the top:print() Preparatory Statements

from __future__ import print_function

If there are no uses of USING_PYTHON2 in your code, this line can be removed from the top:

USING_PYTHON2 = sys.version_info[0] < 3

If there are no uses of "sys." in your code, you can also remove this line from the top:

import sys

Make Sure that Python2 AND Python3 Tests Work
To change your tox tests so that you are testing against both Python2 and Python3, a small change is needed to your file. In particular, change tox.ini
this block from

[tox]
envlist = py27

to instead read

[tox]
envlist = py27,py36

Now run " " to execute your test modules once with Python2 and then again with Python3. (The final choice of vs vs is yet to tox test py34 py36 py37
be determined.)

https://wiki.web.att.com/display/ECOMPC/Converting+Cloudify+Plugins+to+Support+Python3#ConvertingCloudifyPluginstoSupportPython3-ConvertingCloudifyPluginstoSupportPython3-PreparatoryStatements

What to do When Python3 Tests Fail
If your Python3 tests fail within your code, your recourse is to fix your code. Just do it in a way that is compatible with both versions of Python.

Most of the cloudify mock libraries are compatible with Python3, but a few are not. If your Python3 tests fail because of an incompatibility in the cloudify
mock libraries, until we get modified versions of the mock libraries we won't be able to run the tests with both versions of Python. You may be able to
temporarily comment out some specific mock references and test the rest.

	Converting a Cloudify Plugin to Support Both Python2 and Python3

