
Maximizing Benefits of CSIT in ONAP Development
Introduction
CSIT (" Integration Testing", even though you could also read that as Continuous System and
"Component-Specific Integration Testing") cases in ONAP exist typically for verifying functionalities of a
single or few ONAP components in limited testing environments suitable for lightweight installation in
local development environment and Jenkins and often rely on simulators. These tests are executed once
per day on images from master branch (as well as on maintenance branches of selected previous
releases) or whenever the test cases themselves are committed for review. This means that by ONAP's
current automated verification procedure any new bugs that could be caught by the existing CSIT cases

 In addition, any failures in daily CSIT are not discovered until the bugs are already merged to master.
Jenkins are not sending any kind of notifications or raising tickets or alarms, so the teams are not even
getting any automated feedback from the failures that can therefore go days or in worst cases weeks
without notice (much less action).

Creating a CSIT Test

Action plan for El Alto and next brainstorming: https://etherpad.opnfv.org/p/CSIT4ONAP

CSIT jenkins page: https://jenkins.onap.org/view/CSIT/

Goal
The ultimate ideal goal for automated verification procedure should be that code review verification jobs
would run also the relevant CSIT cases and have a verification vote on the review it is merged. before
Moreover those CSIT tests should be always executed locally by the developer before committing to
minimize the possibility of a failure in Jenkins and shorten the feedback loop to minimum.

Obstacles
The writer of this analysis is not aware of the original reasons to exclude CSIT from review verification
jobs (or if including them was ever even considered), but several reasons for keeping them separate can
be seen at the current state of ONAP:

Component code and CSIT cases are in different repos, which means that introducing non-
backward-compatible changes leads to egg-chicken problems where neither test case nor
implementation modifications can pass their respective review verifications without either one of
them being already merged or then by currently unexplored gerrit patch dependency tricks
Many CSIT cases take a long time to execute, prolonging review verification feedback
significantly and most likely causing bottlenecks in Jenkins leading to even further delays in day-
to-day development
Current CSIT tools do not fully support building and testing of local images
CSIT tests might not be stable enough in all cases to rely on continuous development yet - we
can't have random failures delaying or preventing merges and we have to be able to rely on the
results
Every committer would have to be able to at least execute and troubleshoot Robot test cases in
order to commit any changes - do the teams currently have sufficient competence?
Related to the required competence: executing CSIT cases in local development environments
currently requires some effort - there are both some generic and project-specific peculiarities
that are not sufficiently well documented

Steps Required

CSIT as Part of Automated Code Review Verification

The most important thing needed to incorporate CSIT cases into code review verifications
smoothly is to either put them under the same repo or force the use of gerrit patch dependency
functionality so any code commit that changes some already verified functionality (or introduces
some new functionality that requires new tests) also can (and must) bring the related CSIT
changes

See Moving CSIT to project repositories
CSIT execution and environment setup should be enhanced to be able to build and use images
coming from the review branch
Execution times of the CSIT tests should be shortened to the absolute minimum

A major part of this is closely related to the product maturity in general - image sizes
(which affects the download time from Nexus) and container startup time optimization
could help a lot also in CSIT cases where amount of time is spent in setting significant
up the test environment

Recently Updated
Policy R9 Istanbul CSIT/External Lab
Functional Test Cases
Oct 13, 2021 updated by • Sirisha
Manchikanti • view change
Policy R9 Istanbul CSIT/External Lab
Functional Test Cases
Oct 11, 2021 updated by • Liam Fallon •
view change
Policy R9 Istanbul CSIT/External Lab
Functional Test Cases
Jul 15, 2021 updated by • Jim Hahn • vi
ew change
Policy R8 Honolulu CSIT/External Lab
Functional Test Cases
Jan 21, 2021 updated by • Jorge
Hernandez • view change
Policy R6 Frankfurt CSIT/External Lab
Functional Test Cases
Apr 13, 2020 updated by • Ajith
Sreekumar • view change
Policy R6 Frankfurt CSIT/External Lab
Functional Test Cases
Apr 08, 2020 updated by • Jorge
Hernandez • view change
Policy R6 Frankfurt CSIT/External Lab
Functional Test Cases
Apr 08, 2020 updated by • Pamela
Dragosh • view change
Policy R6 Frankfurt CSIT/External Lab
Functional Test Cases
Oct 24, 2019 updated by • Ali Hockla • vi
ew change
Creating a CSIT Test
Apr 25, 2019 updated by • Lasse
Kaihlavirta • view change
Policy R4 Dublin CSIT/External Lab
Functional Test Cases
Apr 25, 2019 updated by • Jim Hahn • vi
ew change
Policy R4 Dublin CSIT/External Lab
Functional Test Cases
Apr 19, 2019 updated by • Pamela
Dragosh • view change
Policy R4 Dublin CSIT/External Lab
Functional Test Cases
Apr 16, 2019 updated by • Bilal Anwer •
view change
Policy R4 Dublin CSIT/External Lab
Functional Test Cases
Apr 12, 2019 updated by • Ali Hockla • vi
ew change
Policy R4 Dublin CSIT/External Lab
Functional Test Cases
Apr 11, 2019 updated by • Ram Krishna
Verma • view change
Creating a CSIT Test
Mar 13, 2019 updated by • Martin Klozik
• view change

https://wiki.onap.org/display/DW/Creating+a+CSIT+Test
https://etherpad.opnfv.org/p/CSIT4ONAP
https://jenkins.onap.org/view/CSIT/
https://wiki.onap.org/display/DW/Moving+CSIT+to+project+repositories
https://wiki.onap.org/pages/viewpage.action?pageId=103420653
https://wiki.onap.org/pages/viewpage.action?pageId=103420653
https://wiki.onap.org/display/~Sirisha_Manchikanti
https://wiki.onap.org/display/~Sirisha_Manchikanti
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=103420653&selectedPageVersions=12&selectedPageVersions=11
https://wiki.onap.org/pages/viewpage.action?pageId=103420653
https://wiki.onap.org/pages/viewpage.action?pageId=103420653
https://wiki.onap.org/display/~liamfallon
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=103420653&selectedPageVersions=11&selectedPageVersions=10
https://wiki.onap.org/pages/viewpage.action?pageId=103420653
https://wiki.onap.org/pages/viewpage.action?pageId=103420653
https://wiki.onap.org/display/~jrh3
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=103420653&selectedPageVersions=4&selectedPageVersions=3
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=103420653&selectedPageVersions=4&selectedPageVersions=3
https://wiki.onap.org/pages/viewpage.action?pageId=93008140
https://wiki.onap.org/pages/viewpage.action?pageId=93008140
https://wiki.onap.org/display/~jhh
https://wiki.onap.org/display/~jhh
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=93008140&selectedPageVersions=3&selectedPageVersions=2
https://wiki.onap.org/pages/viewpage.action?pageId=71828733
https://wiki.onap.org/pages/viewpage.action?pageId=71828733
https://wiki.onap.org/display/~a.sreekumar
https://wiki.onap.org/display/~a.sreekumar
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=71828733&selectedPageVersions=9&selectedPageVersions=8
https://wiki.onap.org/pages/viewpage.action?pageId=71828733
https://wiki.onap.org/pages/viewpage.action?pageId=71828733
https://wiki.onap.org/display/~jhh
https://wiki.onap.org/display/~jhh
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=71828733&selectedPageVersions=8&selectedPageVersions=7
https://wiki.onap.org/pages/viewpage.action?pageId=71828733
https://wiki.onap.org/pages/viewpage.action?pageId=71828733
https://wiki.onap.org/display/~pdragosh
https://wiki.onap.org/display/~pdragosh
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=71828733&selectedPageVersions=7&selectedPageVersions=6
https://wiki.onap.org/pages/viewpage.action?pageId=71828733
https://wiki.onap.org/pages/viewpage.action?pageId=71828733
https://wiki.onap.org/display/~ah999m
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=71828733&selectedPageVersions=2&selectedPageVersions=1
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=71828733&selectedPageVersions=2&selectedPageVersions=1
https://wiki.onap.org/display/DW/Creating+a+CSIT+Test
https://wiki.onap.org/display/~kaihlavi
https://wiki.onap.org/display/~kaihlavi
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=8232252&selectedPageVersions=14&selectedPageVersions=13
https://wiki.onap.org/pages/viewpage.action?pageId=54723442
https://wiki.onap.org/pages/viewpage.action?pageId=54723442
https://wiki.onap.org/display/~jrh3
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=54723442&selectedPageVersions=62&selectedPageVersions=61
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=54723442&selectedPageVersions=62&selectedPageVersions=61
https://wiki.onap.org/pages/viewpage.action?pageId=54723442
https://wiki.onap.org/pages/viewpage.action?pageId=54723442
https://wiki.onap.org/display/~pdragosh
https://wiki.onap.org/display/~pdragosh
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=54723442&selectedPageVersions=60&selectedPageVersions=59
https://wiki.onap.org/pages/viewpage.action?pageId=54723442
https://wiki.onap.org/pages/viewpage.action?pageId=54723442
https://wiki.onap.org/display/~bilalanwer
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=54723442&selectedPageVersions=59&selectedPageVersions=58
https://wiki.onap.org/pages/viewpage.action?pageId=54723442
https://wiki.onap.org/pages/viewpage.action?pageId=54723442
https://wiki.onap.org/display/~ah999m
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=54723442&selectedPageVersions=57&selectedPageVersions=56
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=54723442&selectedPageVersions=57&selectedPageVersions=56
https://wiki.onap.org/pages/viewpage.action?pageId=54723442
https://wiki.onap.org/pages/viewpage.action?pageId=54723442
https://wiki.onap.org/display/~ramverma
https://wiki.onap.org/display/~ramverma
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=54723442&selectedPageVersions=56&selectedPageVersions=55
https://wiki.onap.org/display/DW/Creating+a+CSIT+Test
https://wiki.onap.org/display/~mklozik
https://wiki.onap.org/pages/diffpagesbyversion.action?pageId=8232252&selectedPageVersions=13&selectedPageVersions=12

Building a new image for every new review patch would make this
optimization even more crucial

Reducing all kinds of test-specific retries and waiting times to absolute minimum but no
more than that

Note that the other side of this coin is test stability in different environments
with varying resources, so special care also needs to taken to ensure that
timeouts are not optimizedover

In the long run this requirement is also at direct odds with the requirement that every
integration-level bug correction and new feature should be verified in CSIT (if you didn't
have this requirement before, you have it now) - eventually the total mass of things
that need to be covered in CSIT will (or at least should) grow too big to be executed in
every review verification

Streamlined set of critical CSIT tests executed in review verification may have
to be separated from full regression set that would be executed only on
merged code

CSIT tests should be reliable and working
non-problematic code changes should always pass on the first attempt without needing
to retry them a couple of times just in case they failed for some unrelated random
causes
people are less likely to just ignore and override negative CSIT votes if they know
failing CSIT is an indication of a real problem in the commit

Manual CSIT Verification on Local Development Environment

Developers should always verify their changes with CSIT locally (and sometimes also enhance
the related CSIT suite) before committing - automated verification in Jenkins should not be
considered a development tool

Many of the action items listed above apply also here, but will be repeated
Tools for executing the CSIT cases in local development environments should be enhanced to
enable easy deployment of local test images as part of the test environment setup

Currently there is partial support for this at least in some docker_run scripts, but this
support does not extend to run-csit.sh and is not sufficiently documented

Documentation of CSIT execution in local development environments should be up-to-date,
sufficient and working for every project at all times so developers can actually use it to their
advantage

Part of the problem is that there are project-specific requirements that need to be
known - integration team should try to consolidate this and lay down some common
requirements and, on the other hand, provide common ways of doing things that teams
have had to solve for themselves until now

Concrete first step to remedy this is to go through all existing projects, see
and document what it actually takes to make them pass, and see if there are
any common improvements to be made (this can be driven by integration but
needs obviously support from project teams)

Quality Assurance While CSIT Remains Outside Review
Verification

Project teams should check their CSIT Jenkins jobs and treat any failures as every day
showstoppers

It is that failures are at least analysed , because that's how long critical within 30 days
Jenkins stores the results. After 30 days you can no longer find out via Jenkins what
changes broke the build!
integration team could also benefit from checking these and making sure teams are
alerted to any failures - in longer term this should save final integration phase troubles
and keep integration team generally up to date on the overall state of the CSIT suites
and therefore (at least ideally) of the ONAP project

The importance of manual CSIT execution by developers before committing (and all actions
making that as easy as possible) is emphasized since it is currently the only gatekeeper before
code merges

	Maximizing Benefits of CSIT in ONAP Development

