SON-Handler MS (DCAE) Impacts

References

Use case overview and impacted components are described in the 5G OOF PCl optimization main wiki page.

1. Architecture

The architecture below depicts the SON-Handler MS as a part of DCAE. Only the relevant interactions and components are shown.

P
[Consul Cluster ﬂ

DCAE Platform DCAE Services

Cloudify
Manager

e

SON Handler

MS

e

Inventory API CBS 7
/ PG DB
Service Change Deployment Policy SNMP VES Datafile HV-VES
Handler Handler Handler Trap Coll. Collector Collector Collector
s I
N

CLAMP SDC olicy - node)

——
The internal architecture of SON-Handler MS is shown below.
)/,’. - - ._\\\\

Spring boot application

Core Logic

!

It

REST Interface

DMaaP client

DB contents

. Config information

. Processed notifications
& alarms (until OOF
response is received)

. Buffered notifications &
alarms

. State information

. FM/PM historical data

—_

M

w

(420 =

‘ f)l
| L”/

OOF ‘ SDN-R

Policy M VES-C J

U

RAN nodes

1.1. Core Logic

Could be a CU/DU
or a traditional BS.

Other ONAP
components

Data } PosgreSQL DB

https://wiki.onap.org/display/DW/5G+-+OOF+%2528ONAP+Optimization+Framework%2529+and+PCI+%2528Physical+Cell+ID%2529+Optimization

This is composed of a Main Thread and one or more Child Threads. The Main Thread is responsible for spawning and terminating the Child Threads, this
is described in the sections below.

1.2. Database

This is a PostgreSQL DB, and is intended to persist information such as the following:

PCI-Handler MS Config information (e.g., thresholds, timer values, OOF algorithm name, etc.)
Pre-processing results and other related information (e.g., neighbor list)

Buffered notifications (i.e., notifications not yet processed at all)

State information

Association between pnf-name and Cellld

PM/FM data

1.3. DMaaP Client

This is responsible for registering with the DMaaP client for the DMaaP notifications from SDN-R and VES-Collector, and to Policy.

2. Core Logic components and Pre-processing algorithm

Note: The pre-processing logic may not be 100% fool-proof as well as the most efficient one. An attempt has been made to balance the usefulness for a
PoC versus the complexity of handling all possible scenarios.

2.1. Main Thread

The state transition diagram is illustrated below:

The main actions in the various states are listed below:

Initialization

Initialize MS, recover details
from

Fetcn config policies from CBS
Create PM child thread

Terminating
—J—' Clean up resources
@__’ Etemal Wait Sate | |L_Terminate_Reghiest

Init_fomplete

Notification from VES-
Collector (DMaF) ‘Wait for inputs

Update from PCLANR
Response from Policy with (partial) child thread after rdsponse
oication o SOULE s oot DA ram Poicy
Dhissny REST call from OOFTT) rom Polic
&) PCI/ANR Updates l,
Child thread status
SDN-R notification OOF response Policy response -
FM/PM handling [handling] [handl?ng 1 | handling | update handling

Determine if relevant
FM/PM by filtering DMaaP
message (else do nothing)

Kill PCI-ANR child thread

Determine if notification is
to be processed

Update the
information from policy
10 the relevant table

Forward response to
child thread

Clean up resources for the
cluster
Inform PM child thread

PM notification FM notification

Notification to be
buffered

Buffer notification

Buffer the notification (store in
DB)

processed

Determine if FM is to be

[Handle PM notification] [FM handiing] [Child thread triggering]
Discard any old notification

Store PM data in DB Instantiate child thread (if not
Trigger PM child thread existing)
from same cell in the buffer

Forward nofification to relevant
processed buffered
PCI-ANR child thread Buffer FM data
triggering
Store FM data in DB after
Instantiate child thread (if not checking for any
existing) complementary FM (alarm)
Forward nofification to relevant and discarding unwanted
PCI-ANR child thread alarms
t t A
Ny
Legend

PCI-ANR child thread
State Name s State Name |Transient state, may not be implemented as a "state” in the
® as it could simply involve performing a sequence of
xyz prover stale abc actions

2.1.1. Initialization
In this state, the following actions are performed:

Fetch Config Policy from CBS.

Load any local configuration.

Load data persisted in DB.

Trigger DMaaP thread for registration of DMaaP topics (SDN-R, VES-Collector and Policy interfaces).

2.1.2. Eternal Wait State

The main thread always comes back to this state (except when terminated). In this state, the inputs and associated actions are summarized below:

2.1.2.1. DMaaP message from VES-Collector received (PM/FM data)

® FM data received: Determine if alarm to be processed, if yes, trigger appropriate PCI-ANR child thread, else, buffer the FM data.
® PM data received: Trigger PM child thread

2.1.2.2. SDN-R Notification handling
Upon receipt of a neighbor-list-change notification message (DMaaP) from SDN-R, do the following:
1. Fetch the PCI_optimization requests (from DB) for which OOF has been triggered, and corresponding ‘cluster’ details
2. For each ‘cluster’ for which OOF has been triggered, check if the Nodeid of the Cell Ci or at least one cell in its NbrList matches with any cell in
the ‘cluster’

3. If there is a match, then the request has to be buffered, along with the cluster indication (cluster id), else the notification has to be processed. If
the notification has to be processed, then instantiate the PCI-ANR child thread (if not already active), and forward the notification.

2.1.2.3. OOF Response Handling

Upon invocation of API by OOF for PCI result pass it to the relevant child thread(s) (by request id <-> thread mapping). Store the OOF results in database
along with the timestamp.

2.1.2.4. Policy response handling

® Response from policy is handled by a separate thread.
®* When positive acknowledgement is received from the policy the cells in the response are removed from the table and when negative
acknowledgement is received the negative_ack count for the cell is increased and updated in the table. When no response is received no

changes are made.
® When negative_ack count of a particular cell increases beyond a threshold, it is shifted to another table.

2.1.2.5. Child Thread Status update handling

Clean up the resources associated with the child thread (including cluster details), and kill the child thread.

2.1.3. Terminating

Upon receiving a terminate request clean up all resources.

2.2. PCI-ANR Child Thread(s)

These child threads are spawned for handling PCI optimization primarily, though they may also trigger PCI-ANR joint optimization in some cases. The
various states and associated actions are described below.

Initialization

Initialize data
structures

Check

Neighbor list change notification,
from SDN-R

Neighbor list change
notification

Form cluster with 2 levels of
neighbors
Determine collisions/confusions

nolification type

FM notification from
VES Collector

FM notificatior

Form cluster with 2 level of
neighbors.

Store collision/confusion
details

Check if OOF can be

Wait for more notificafions
and/or alarms

notifications/y

Wait for more

Jred or wait for more
yarms

trigg

OOF to be
ed

[Svnchromze with PM-based ANR ac(ions]

Check if OOF can be triggered or wait for

ANR action completion by PM child thread

J

PM-based

Re-determine valid
collisions/confusions

PM-based

Re-check collisions/confusions based o

on any ANR updates done by PM
Thread, and make necessary
updates to the counters, etc.
Process any buffered notifications
and/or alarms,

wait for more
nofifications/alarms

Wait for
nofifications/alarms [notif_timer expiry

and/or alarms

OOF can He triggered

Start notif_timer if not
started already

New notificationfalarm
refeived

Processin:
notification/alarms

Modify existing cluster (it

applicable)

Correlate notification/alarms,
and update collisions/
confusions count

Determine trigper type

PCI optimization
trgger

ongoing

ANR
Pleted

oint PCI/ANR optimization

ANR update

Wait for PM-based ANR actions

actions
Wait until completion of PM-based
ANR actions (by PM child thread)
“ J

Notifig
alarm 1|

ation/
ceived

Buffer notifications/alarms

Buffer notifications/alarms until
PM-based ANR action completion
|

Trigger OOF, wait for PCI [
optimization results

Trigger OOF, wait for PCI-ANR optimization
It:

|

results

Trigger OOF for PCI optimization

OQE optimization results

Trigger OOF for PCI/ANR joint optimization.
Defermine & pass ‘removable neighber info’ in
the request io OOF.

OOF optim
received,

Prepare DMaaP messages for
impacted cell(s) and neighbors, and

changes 4

ults
|

ization r:
ek-+PCl
re received

send the messages to Policy
Start Policy_rzp timer

No PCI changes

fFCI changes received

Prepare PCI updates

N
Wait for Policy response
[¥ resp Prepare DMaaP messages for

Wait for response from Palicy until impacted celi(s) and neighbors
Folicy_rsp timeout ¢

New ntification/alar Stay in this state until Policy response is

received received or Polic_rsp limeout occurs. Buffer R
any new notifications or alarms received Check if any NRT updates
from main thread. are receivef from OOF.
J
Policy rsp timeout

Fnhcyl&spnnse received

Process policy response

[]

Process Policy_rsp timeout]

Log the timeout
Start buf_tumer

Log the details of the policy
response (including any errors)
Start buf_timer

L

New notification/al,
received

Wait for RAN updates

WWait for RAN nodes to send
updates until buf_timer expiry

o

uf] timer expiry

Check need for action

Check if any buffered nofifications
andlor stored alarms present

Buffered notifications

Buffered nptifications

[

and/or alarmfs not present

Determine next steps

Using QOF resulis and/or PM-based |
ANR updates, check it

Sending updates to Policy

Send prepared DMaaP
messages to Policy
Start Policy_rsp timer.

dates received

No NRY update

Prepare ANR updates

Update prepared DMaaP message
contents (if needed) for the neighbors of
cells whose PCI was updated andior
prepare additional messages (if needed)
for NRT updates

(a) any alarm is automatically handled
and remove such alarms.

(b) any part of the notification is
automatically handled and ignore those

parts
With remaining items, correlate alarms,
if any, and notifications, if any

Check nunjber of new
collisions/fonfusions

(Inform main thread

Newg colisions/confusions. New collisions/confusions.

Inform main thread that all actions are
completed.

Legend
State Name asa State Name [Transient state, may
= be
xyz proper state xyz as a state in code

2.2.1 Initialization

In this state, perform initialization, and based on the type of notification, go to either Section 2.2.1.1 or 2.2.1.2 for next actions.

2.2.1.1. Neighbor list change notification received

® Store details of the cell (which sent the neighbor list change notification) and its neighbors in DB.

® For each of the neighbors, fetch the neighbor list (via REST API) from SDN-R Config DB (i.e., fetch neighbor of neighbors of the cell that sent the
neighbor list change notification).

® Form a cluster with the cell, its neighbors and neighbors of each of the neighbors.

® Assign a cluster id.

® Determine collision/confusion by calling method determine_collision_confusion. Go to step 2.2.1.3.

2.2.1.2. FM notification received

® Store details of the FM in DB.
® Increment the number of collisions and/or confusions depending on the type of alarm received. Go to step 2.2.1.3.

2.2.1.3. Check if OOF can be triggered

Based on number of collisions/confusions and config policy, determine if OOF has to be triggered or more notifications should be awaited (handle also
timeout case).

If OOF has to be triggered

then
if any ANR actions are ongoing by PM-child thread
Go to "Wait for PM-based ANR actions" state (Section 2.2.2)
else
Go to step 2.2.1.4 below.
fi
else

Go to "Wait for notifications/alarms" state (Section 2.2.3)
fi
2.2.1.4. Re-determine valid collisions/confusions
This step is to ensure that collisions and confusions are re-computed after PM-based ANR actions are completed. When transitioning from 2.2.1.1 or
2.2.1.2, this action need not be carried out. After re-computation of collisions/confusions, again a check on number of collisions/confusions should be done
to determine if OOF has to be triggered or more notifications should be awaited (handle also timeout case).
If OOF has to be triggered
then
Go to Step 2.2.1.5 below
else
Go to "Wait for notifications/alarms" state (Section

fi

2.2.1.5. Determine OOF trigger type

A simple logic, for e.g., based on number of times PCI optimization has been triggered during a given time window could be used to determine whether
PCI optimization or joint PCI-ANR optimization should be triggered.

If PCI optimization should be triggered
then
Go to "Trigger OOF, wait for PCI optimization results" state (Section 2.2.4)
else
Go to "Trigger OOF, wait for PCI-ANR optimization results" state (Section 2.2.5)

fi

2.2.2. Wait for PM-based ANR actions

Wait until PM-based ANR actions are completed by PM child thread. In this state, if any new notifications/alarms are received, then the child thread simply
buffers them. Upon knowing that the PM-based ANR actions are completed, go to Step 2.2.1.4.

2.2.3. Wait for notifications/alarms

Wait for more notifications/alarms, and start notification_timer if not started already. Upon reception of a new notification/alarm, go to Step 2.2.3.1 below.
Upon notification_timer expiry, go to Step 2.2.1.5.

2.2.3.1. Process notification/alarm

* [f a cell that already exists in the cluster has sent a notification (for neighbor-list change), update the cell's neighbors appropriately in the existing
cluster. Otherwise, 'attach’' the cell appropriately in the existing cluster, and update the cell's neighbors.

® For each of the neighbors, fetch the neighbor list (via REST API) from SDN-R Config DB (i.e., fetch neighbor of neighbors of the cell that sent the

neighbor list change notification).

Modify/extend the cluster appropriately.

Determine collision/confusion by calling method determine_collision_confusion.

Correlate alarms and neighbor list change notifications (to avoid duplicate counts),

Go to Step 2.2.1.3.

Note: When transitioning to this state from Handle buffered notifications state, more than 1 notification may have to be handled.

2.2.4. Trigger OOF, wait for PCl optimization results

Send a PCI_opt request to OOF with cells triggering the request along with the trigger type

Store details of request in DB.

Wait for OOF optimization result.

Upon trigger from main thread with OOF PCI optimization result, prepare and send DMaaP messages to Policy: for the cells whose PCI value has
changed, as well as to all the neighbors of the cells whose PCI value has changed. The pnf-name corresponding to the cell-ids can be fetched
from Config DB of SDN-R (using REST API). (Note: The layout of the message from SDN-R to RAN is available in the SDN-R sub-page).

® Start Policy_rsp timer and wait for Policy response by going to "Wait for Policy Response" state (Section 2.2.6).

2.2.5. Trigger OOF, wait for PCI-ANR optimization results

® Fetch the list of cell pairs whose HO success is less than thresold_poor, but >= threshold_bad (this would have been prepared already by PM
child thread and stored in DB).

Send a Joint_PCI_ANR_opt request to OOF with cells triggering the request along with the trigger type, and list of ‘removable neighbors'
Store details of request in DB.

Wait for OOF optimization result.

Upon trigger from main thread with OOF ANR-PCI optimization result

if response contains PCI updates

then
Prepare DMaaP messages to Policy for the cells whose PCl value has changed, as well as to all the neighbors of the cells whose PCI
value has changed. The pnf-name corresponding to the cell-ids can be fetched from Config DB of SDN-R (using REST API). (Note:
The layout of the message from SDN-R to RAN is available in the SDN-R sub-page)

fi

if response contains NRT updates (corresponding to ANR)
Update/prepare DMaaP messages to Policy for the cells whose neighbors have undergone updates (with indication "HO
prohibited"). The pnf-name corresponding to the cell-ids can be fetched from Config DB of SDN-R (using REST API). (Note: The
layout of the message from SDN-R to RAN is available in the SDN-R sub-page)

fi

https://wiki.onap.org/display/DW/SDN-R%253A+Impacts+and+Interface+aspects?src=contextnavpagetreemode
https://wiki.onap.org/display/DW/SDN-R%253A+Impacts+and+Interface+aspects?src=contextnavpagetreemode
https://wiki.onap.org/display/DW/SDN-R%253A+Impacts+and+Interface+aspects?src=contextnavpagetreemode

Send prepared message(s) to Policy.
Start Policy_rsp timer and wait for Policy response by going to "Wait for Policy Response" state (Section 2.2.6).

Handling Policy Response

Response from policy is handled by a separate thread.

When positive acknowledgement is received from the policy, the cells in the response are removed from the table and when negative
acknowledgement is received the negative_ack count for the cell is increased and updated in the table. When no response is received no
changes are made.

When negative_ack count of a particular cell increases beyond a threshold, it is shifted to another table.

2.2.7. Wait for RAN updates

Wait in this state until buf_timer expires. If any notification/alarm is received in this state, simply buffer/store them. Upon expiry of buf_timer, check if there
are any buffered notifications.

if there are buffered notifications/alarms

then

else

fi

Alarms: Based on OOF results and/or PM-based ANR updates check if any new alarms are automatically inapplicable, and remove them.
Notifications: Based on OOF results and/or PM-based ANR updates check if any new neighbor list change notifications are automatically
inapplicable (partially), and update them.

Determine collisions/confusions, perform correlation of pending alarms and notifications to remove duplicate entries. Go to Step 2.2.1.3.

Inform main thread of action completion

2.3. PM-child thread

This child thread perform all PM-related computations, and initiate autonomous ANR updates based on HO metrics.

1

Initializing

Initialize datastructures

I

Wait for PM inputs
() Wait for periodic PM inputs

PN inpu

received

Determine actions

1. Compute HO success metrics for every source-destination cell pair,
and store in DB.
3 2. Store the details separately of the cell pair(s) whose HO success is
consistently:
(a) = threshold_bad
(b) = threshold_poor, but == threshold_bad
3. Perform DB book-keeping actions (delete old PM entries)
4. Determine if any pair has a consistently HO success = threshold_bad
\ J

HO success = threshold_bad HO success < threshold_bad for
ToramTTeTpa ClaicEmaey

Determine readiness for

sending ANR updates PMinputs feceived

Check if ANR actions can
be carried out (check if
any actions ongoing by
PCI-ANR child thread(s)

PCI-ANR optimization actions
ongoing

—
(_resp is pending ‘Wait for PCI-ANR child thread(s)
action completion

Wait until PCI-ANR child thread(s)
complete carrying out their actions
{until Policy response is received

for updates)

Poligy_resp is pending

PCI-ANR op§mization actions

corfipleted

Policy_|

Send information to Policy
Pending 4NR to be
sgnt

Prepare DMaaP message(s) with
ANR updates and send to Policy
for all the impacted cells)

Start Policy_rsp timer

Update completion status
Update PM-based ANR
actions are completed

No pending actions

Wait for Policy_response

S~————————— 3] Wait for response from Policy or
until Policy_rsp timeout

\ J
Check for any pending actions

e Policy_response received or I
Check if any pending ANR info

Policy_rsp timeout
has to be sent to Policy

PM inputs redeived

Legend

State Name Proper state Transwent state, may not be

implemented as a state in code

2.3.1. Initialization

In this state, all data structures are initialized. This includes any processing-pending PM data, processed PM data and populating details from DB.

2.3.2. Wait for PM inputs

In this state PM inputs are awaited. Upon reception of PM inputs, do the following:

2.3.2.1 Handle PM inputs

® Compute HO success metrics for every source-destination cell pair, and store in DB.
® Store the details separately of the cell pair(s) whose HO success is consistently:

a. <threshold_bad
b. <threshold_poor, but >= threshold_bad

® Perform DB book-keeping actions (delete old PM entries).
® if any pair has a consistently HO success < threshold_bad

then

2.3.2.2. Check readiness for ANR actions and carry out next steps

if ANR actions can be carried out (i.e., any PCI-ANR actions are ongoing by a PCI-ANR child thread)
then

if Policy_rsp is not pending

then
2.3.2.2.1. Prepare and send message(s) to Policy
Prepare and send DMaaP messages to Policy for all the cells whose neighbors have to be updated with "HO prohibited".
Start policy_rsp timer
Go to "Wait for Policy response" state (Section 2.3.4)
else
Go to "Wait for Policy response" state (Section 2.3.4)
fi

else
Go to "Wait for PCI-ANR child thread(s) action completion” state (Section 2.3.3)
fi
else
Remain in "Wait for PM inputs" state (Section 2.3.2).

fi

2.3.3. Wait for PCI-ANR child thread(s) action completion

When an indication that PCI-ANR child thread(s)' actions are completed is received, go to Step 2.3.2.2.1. If any PM inputs are received, go to Step 2.3.2.

2.3.4. Handling Policy response

® Response from policy is handled by a separate thread.

®* When positive acknowledgement is received from the policy, the cells in the response are removed from the table and when negative
acknowledgement is received the negative_ack count for the cell is increased and updated in the table. When no response is received no
changes are made.

® When negative_ack count of a particular cell increases beyond a threshold, it is shifted to another table.

	SON-Handler MS (DCAE) Impacts

