
CertService and K8s Cert-Manager integration

Problem statement
K8s Cert-Manager Introduction

Brief introduction to Cert-Manager usage
Way forward

Usages
Helm templates
DCAE blueprints

Limitations
Future

CertService API enhancements
Cert-Manager native support

Problem statement
ONAP has a lot of components which enroll certificates:

Legacy AAF CertMan which uses SCEP protocol or own internal Certificate Authority - mostly used by AT&T and integrated with several ONAP
components
New CertService which uses CMPv2 to enroll certificates - integrated with ONAP bordering components to protect external traffic
K8s Cert-Manager which is OOM way forward to enroll certificates for ONAP components and de-facto industry standard for K8s based clouds

It is time to unify them and use forward just one of them.

K8s Cert-Manager Introduction
K8s Cert-Manager is an industry standard to issue X.509 certificates to K8s workloads. It provides simple, reliable, elastic and efficient way to issue
certificates within K8s environment. Simple cause it relies on K8s custom resource definition (CRD) mechanism, reliable cause without secret created by
Cert-Manager K8s workload won't start, elastic cause it can provide certificates from many sources, including external issuers and efficient - cause it may
deliver hundreds of certificates per day.

Brief introduction to Cert-Manager usage

As previously mentioned, Cert-Manager consumes to issue certificates. But before first certificate is issued, Certificate CRD Issuer or ClusterIssuer
 has to be configured first. For basic use cases that's all. One can use very CRD and use rich functionality to configure issued certificate various

.types of issuers

Underneath, out of Certificate CRD, Cert-Manager creates which is more suitable for M2M processing as it contains CertificateRequest CRD
Certificate Signing Request (CSR). CertificateRequest CRD is further on consumed by Issuer which processes CSR stored there and in return puts
signed certificate and trusted certs in CertificateRequest's status and marks CertificateRequest as . Cert-Manager notices such state change Ready
and from CertificateRequest marked as Ready creates K8s secret originally requested in Certificate CRD. Such K8s secret is ready to be mounted
to K8s workload as any other secret.

Way forward
CertService was implemented some time back. It provides basic certificate enrollment functionality using CMPv2 over HTTP. Cause in ONAP we have a
lot of components which issue certificates, it is wise to harmonize them and use forward just one of them. As a way forward, CertService should be a
backend proxy service for K8s Cert-Manager. The same functionality which is currently implemented in CertService client should be implemented in Cert-
Manager's external issuer, except parts which are already implemented in Cert-Manager and are generic for all issuers (e.g. input parameters validation,
conversion to different format, etc). If possible the same input parameters which nowadays are used by CertService client should also be used by
Certificate CRD. Following diagram presents new setup.

https://cert-manager.io/docs/
https://cert-manager.io/docs/concepts/certificate/
https://cert-manager.io/docs/concepts/issuer/
https://cert-manager.io/docs/concepts/issuer/
https://cert-manager.io/docs/usage/certificate/
https://cert-manager.io/docs/configuration/
https://cert-manager.io/docs/configuration/
https://cert-manager.io/docs/concepts/certificaterequest/

As a consequence, all existing usages should be adjusted to use new way and create Certificate CRD instead of calling CertService client as init container.

In fact, Cert-Manager's external issuer is a which reconciles two CRDs:K8s operator

Cert-Manager's CertificateRequest CRD
New Issuer CRD

External issuer notices that CertificateRequest CRD with a reference to New Issuer CRD was created and processes CSR stored there and in result puts
signed certificate and trusted certs and marks CertificateRequest as Ready. Simple as that.

Usages

Helm templates

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

1.
2.

1.
2.

In helm templates the way forward is simple. Certificate CRD must be added and K8s workload must be enhanced to mount secret created
out of Certificate CRD.

DCAE blueprints

The same functionality in DCAE is more complicated cause K8s Cloudify plugin code must be extended to create Certificate CRD instead of
adding init container. Following diagram presents flow for DCAE microservice deployment when CMPv2 and Cert-Manager integration is
enabled.

Limitations

After detailed check found out that K8s Cert-Manager doesn't correctly handle issuer's response which contains multiple trusted certificates, aka
root CAs. For that following community bugs were reported:

Add multiple trustedCertEntries to truststores
JKS and PKCS12 Keystores are inconsistent

Future

CertService API enhancements

Add support within CertService API for parameters sent in CSR which are supported by Cert-Manager's Certificate API
CMPv2 over HTTPS support

Cert-Manager native support

There is an open feature request (FR) to support CMPv2 natively in Cert-Manager - https://github.com/jetstack/cert-manager/issues/2619

https://github.com/jetstack/cert-manager/issues/3427
https://github.com/jetstack/cert-manager/issues/3428
https://github.com/jetstack/cert-manager/issues/2619

If such would be implemented, it is beneficial to use it instead of our custom solution.

	CertService and K8s Cert-Manager integration

