
Moving CSIT to project repositories
Description

See Project-specific CSIT structure

Motivation
The most obvious solution for taking full advantage of CSIT is to add the test cases under the same repository with the functionalities that they are testing
(instead of having them in separate centralized CSIT repository as we currently have). This would have the following benefits:

CSIT could be triggered by any commit to the project repo
CSIT tests the code (or specifically, docker images that have been built) from the committed branch
CSIT could have a vote on the commit based on the result of the test run
If the implementation changes require changes in CSIT tests (to cover new functionality or to pass in the first place), that could be handled within
the same commit
ideally, local verification would become less complex (no need to work between CSIT repo and project repo)
No need for the integration team to merge any changes related to your project

Issues
Given the fact that CSITs are currently a very colourful collection of various suites with different scopes and strategies, the transition of CSITs to project
repositories is not necessarily trivial:

CSIT suites that test components from multiple project repositories at the same time
such CSIT tests may have to be separated using additional simulators, or
project repository structures themselves may have to be reconsidered, or
the possibility of combining branches from multiple repositories under the same commit needs to be provided (if gerrit allows?)
In any case, the division between the images and images that are just necessary dependencies should be clearly made and under test
documented

the images under test should be coming from the commit branch
in the case of necessary dependencies it must be decided whether they should be provided as simulators or real components

if provided as real components, they should be referred to with a fixed, unchanging released version number and
should be stable and mature enough to develop on

ONAP's (unintentional?) practice of allowing the same versioned image to be changed is problematic
project-specific simulators that are built on the fly are trivial case from dependency handling point of view, but if common
simulators are in use, dependency considerations for them are the same as with real components

Jenkins templates have to be redesigned to support unified approach for triggering review branch-specific artifact and docker builds, CSIT
execution and voting chain as part of review verification

The redesign should also allow testing locally built docker images in local environment with CSIT as effortlessly as possible
CSITs will become blockers for merging code

local pre-commit verification should be supported better by common CSIT tools
are all projects and suites mature enough to deal with that?

Docker image production practices should be unified (see , and Docker Image Build Guidelines Independent Versioning and Release Process Rele
)ase Versioning Strategy

Technical decisions
New templates have been introduced for all verification steps (see) while all the existing ones have been left Project-specific CSIT structure
untouched

review-verification template
triggered by review commit
has verify vote on the review
triggers artifact builds

Should maybe include also Sonar analysis in the future - those are currently still completely separate jobs executed
only on merged code

triggers docker image build - different types of docker builds each require their own templates (identified and separated by
"artifact-type"), and so far we have them for

maven docker build
golang docker build
images pushed to Nexus3are not

triggers CSIT execution that tests the produced docker images
merge-verification template

triggered by merge
triggers artifact build in the same way as review-verification
triggers docker image build in the same way as review-verification but builds the images from master
triggers CSIT execution that tests the produced docker images in the same way as review-verification
No images are pushed to Nexus3 as a result of merge-verification either; publication of new images still remains the
responsibility of separate docker staging etc. jobs

Execution of CSIT tests and incorporating locally built test images should be made as easy as possible following common guidelines

https://wiki.onap.org/display/DW/Project-specific+CSIT+structure
https://wiki.onap.org/display/DW/Docker+Image+Build+Guidelines
https://wiki.onap.org/display/DW/Independent+Versioning+and+Release+Process
https://wiki.onap.org/display/DW/Release+Versioning+Strategy
https://wiki.onap.org/display/DW/Release+Versioning+Strategy
https://wiki.onap.org/display/DW/Project-specific+CSIT+structure

Local docker build instructions should be maintained and easily accessible (for example, as part of CSIT README.md in the project
repository)
Test environment setup should be as automated as possible (project-specific dependencies should be handled by the setup scripts)
Need for specific environment variables (like , for example, GERRIT_BRANCH) should be minimized and preferably avoided altogether

Artifact builds should take care of code coverage/Sonar analysis
apparently currently there are no common templates dealing with Sonar? (instead, all the project have their custom Sonar JJB definition)
all the Sonars run on daily schedule instead of being triggered
are projects mature enough to define the various Sonar violations as review blockers?

can we give each project the power to define their own quality gates?

Project status and readiness at the end of Honolulu
See CSIT status and readiness per project at the end of Honolulu

Project status and readiness at the end of Guilin
Moved under for referenceCSIT status and readiness per project at the end of Guilin

https://wiki.onap.org/display/DW/CSIT+status+and+readiness+per+project+at+the+end+of+Honolulu
https://wiki.onap.org/display/DW/CSIT+status+and+readiness+per+project+at+the+end+of+Guilin

	Moving CSIT to project repositories

