Deploy OOM and SDC (or ONAP) on a single VM with
microk8s - Honolulu Setup

® Introduction
® Minimum Requirements
® OQverall Procedure
® 1) Install/lUpgrade Microk8s with appropriate version
® 2) Install/remove Helm with appropriate version
© Note: You may encounter some log issues when installing helm with snap
® 3) Tweak Microk8s
® 4) Download OOM repo
® 5) Install the needed Helm plugins
® 6) Install the chartmuseum repository
® 7) Install docker
® 8) Build all oom charts and store them in the chart repo
® 9) Tweak oom override file to fine tune deployment based on your VM capacity and component needs
® 10) Enable Ul access
® 11) Full Deployment Override on a single VM
L]

12) Run testsuites

Introduction

This tutorial is going to explain how to setup a local Kubernetes cluster and minimal helm setup to run and deploy SDC (but can be extended to several/all
ONAP components) on a single host.

The rationale for this tutorial is to spin up a development environment quickly and efficiently without the hassle of setting up a multi node cluster/Network
file share that are needed in a full deployment.

This was a trial in G release but is now extended to the requirements of H release.

WARNING :

There are limitations in using this setup, the purpose is to allow for developers to quickly get access to a working environment ‘'the way their component is
supposed to be deployed'

This is not meant for production obviously, and the tweaks that are done to the OOM/K8s setup are most likely going to evolve with further releases.

Minimum Requirements

" One VM running Ubuntu 20.04 LTS (should also work on 18.04), with internet access to download charts/containers and the oom repo
" Root/sudo privileges
= Sufficient RAM depending on how many components you want to deploy
= Around 20G of RAM allows for a few components, the minimal setup for SDC is enabling :
" Shared Cassandra
" AAF
= Portal (if you need Ul access)
= SDC
" This was tested with a huge VM - 128G of RAM and 12 VCPU, running most of the components in Honolulu development.
" This was tested with a small VM to run components on a local Laptop (need enough ram to create a 20G Ram VM using VBox,
VMWare...)
® above 160G available storage should be sufficient, mostly depends on how many components you want to enable in OOM charts.
" Storage is required mostly to store container images

Overall Procedure

Install/remove Microk8s with appropriate version
Install/remove Helm with appropriate version

Tweak Microk8s

Download oom repo

Install the needed Helm plugins

Install ChartMuseum as a local helm repo

Install docker (now needed to build oom charts)
Build all oom charts and store them in the chart repo
Tweak oom override file to fine tune deployment based on your VM capacity and component needs
Deploy/Undeploy charts

Enable local Ul access

Full Deployment Override on a single VM

Run testsuites

1) Install/Upgrade Microk8s with appropriate version

Why Microk8s ?

Microk8s is a bundled lightweight version of kubernetes maintained by Canonical, it has the advantage to be well integrated with snap on Ubuntu, which
makes it super easy to manage/upgrade/work with

More info on : https://microk8s.io/docs
There are 2 things to know with microk8s :

1) it is wrapped by snap, which is nice but you need to understand that it's not exactly the same as having a proper k8s installation (more info below on
some specific commands)

2) it is not using docker as the container runtime, it's using containerd, it's not an issue, just be aware of that as you won't see containers using classic
docker commands

How to remove/install microk8s ?

If you have a previous version of microk8s, you first need to uninstall it (upgrade is possible but it is not recommended between major versions so |
recommend to uninstall as it's fast and safe)

sudo snap renove m crok8s

You need to select the appropriate version to install, to see all possible version do :

sudo snap info mcrok8s

this tutorial is focused on Honolulu release so we will use k8s version 1.19, to do so, you just need to select the appropriate channel

sudo snap install microk8s --classic --channel =1.18/stable
sudo snap refresh microk8s --classic --channel =1. 19/ stabl e

O (when the master node bug will be fixed on 1.19 kubernetes snap install)

sudo snap install microk8s --classic --channel =1.19/stable

You may need to change your firewall configuration to allow pod to pod communication and pod to internet communication :

sudo ufw allowin on cni0 & sudo ufw al |l ow out on cniO
sudo ufw default allow routed

Addons ?

MicroKs8s is lightweight but comes with several possible addons, OOM and ONAP requires just a few to be enabled, you can choose to enable more if you
want to

DNS addon : we need the DNS addon so that pods can 'see' each other by host name.

Storage addon : we will enable the default Host storage class, this allows local volume storage that are used by some pods to exchange folders between
containers.

sudo m crok8s enabl e dns storage

that's it, you should have a running k8s cluster, ready to host ONAP pods
I recommend to get familiar with microk8s, here are a few useful commands but you can read more on the microk8s website :

microk8s status: Provides an overview of the MicroK8s state (running / not running) as well as the set of enabled addons
microk8s enable: Enables an addon

microk8s disable: Disables an addon

microk8s kubectl: Interact with kubernetes

microk8s config: Shows the kubernetes config file

microk8s inspect: Performs a quick inspection of the MicroK8s intallation

microk8s reset: Resets the infrastructure to a clean state very useful for a dev lab

https://microk8s.io/docs

® microk8s stop: Stops all kubernetes services
® microk8s start: Starts MicroK8s after it is being stopped

2) Install/'remove Helm with appropriate version

Helm is the package manager for k8s, we require a specific version for each ONAP release, the best is to look at the OOM guides to see which one is
required (link to add)

For the Honolulu release we need Helm 3 - A significant improvement with Helm3 is that it does not require a specific pod running in the kubernetes cluster
(no more Tiller pod)

As Helm is self contained, it's pretty straightforward to install/upgrade, we can also use snap to install the right version

sudo snap install helm--classic --channel =3.5/stabl e

Note: You may encounter some log issues when installing helm with snap

Normally the helm logs are available in "~/.local/share/helm/plugins/deploy/cache/onap/logs", if you notice that the log files are all equal to 0, you can
uninstall the helm with snap and reinstall it manually

wget https://get.hel msh/hel mv3.5.4-1inux-and64.tar.gz

tar xvfz hel mv3.5.4-1inux-and64.tar. gz

sudo mv |inux-and64/hel m/usr/local/bin/helm

3) Tweak Microk8s

The below tweaks are not strictly necessary, but they help in making the setup more simple and flexible.
A) Increase the max number of pods & Add priviledged config

As ONAP may deploy a significant amount of pods, we need to inform kubelet to allow more than the basic configuration (as we plan an all in box setup), if
you only plan to run a limited number of components, this is not needed

to change the max number of pods, we need to add a parameter to the startup line of kubelet.

1. Edit the file located at :

sudo nano /var/snap/ m crok8s/current/args/kubel et

add the following line at the end :

- - max- pods=250

save the file and restart kubelet to apply the change :

sudo service snap. m crok8s. daenon- kubel et restart

2. Edit the file located at :

sudo nano /var/snap/ m crok8s/ current/args/ kube-api server

add the following line at the end :

--allow privil eged=true

save the file and restart kubelet to apply the change :

sudo service snap. m crok8s. daenon- api server restart

B) run alocal copy of kubectl

Microk8s comes bundled with kubectl, you can interact with it by doing:

sudo m crok8s kubect| describe node

to make things simpler as we will most likely interact a lot with kubectl, let's install a local copy of kubectl so we can use it to interact with the kubernetes
cluster in a more straightforward way

We need kubectl 1.19 to match the cluster we have installed, let's again use snap to quickly choose and install the one we need

sudo snap install kubectl --classic --channel =1.19/stable

Now we need to provide our local kubectl client with a proper config file so that it can access the cluster, microk8s allows to retrieve the cluster config very
easily

Simply create a .kube folder in your home directory and dump the config there

cd
nkdi r . kube
cd . kube

sudo m crok8s.config > config
chnod 700 config

the last line is there to avoid helm complaining about too open permission

you should now have helm and kubectl ready to interact with each other, you can verify this by trying :

kubect| version

this should output both the local client and server version

Client Version: version.Info{Mgjor:"1", Mnor:"19", GtVersion:"v1.19.7", GtCommit:"

1dd5338295409edcf f f 11505e7bb246f 0d325d15", G tTreeState: "clean", Buil dDate:"2021-01-13T13: 23: 52Z", GoVersi on: "gol.
15.5", Conpiler:"gc", Platform"linux/anml64"}

Server Version: version.Info{Mjor:"1", Mnor:"19+", G tVersion:"vl.19.7-34+02d22c9f 4f b254", G tCommit:"

02d22c9f 4f b2545422b2b28e2152b1788f c27c2f", G tTreeState: "cl ean", Buil dDate:"2021-02-11T20: 13: 16Z", GoVersi on: "gol.
15.8", Conpiler:"gc", Platform"linux/and64"}

4) Download OOM repo

OOM provides a couple of plugins that we need to install for helm, the easiest is to get them straight from the repository.
Since we will also build the charts locally, it's the right time to download a local copy, you'll need to install git if it's not available yet on your machine

the example below pulls the latest version from master, it's probably wiser to select the right version (honolulu branch or a specific review you want to test)

cd
git clone "https://gerrit.onap.org/r/oont

5) Install the needed Helm plugins

Onap deployments are using the deploy and undeploy plugins for helm

to install them just run :
hel m plugin install ./oonikubernetes/hel nplugins/undepl oy/

hel m plugin install ./oonl kubernetes/hel nfplugins/depl oy/

this will copy the plugins into your home directory .helm folder and make them available as helm commands

Another plugin we need is the push plugin, with helm3 there is no more an embedded repo to use.

hel m plugin install --version v0.9.0 https://github.com chartmuseunt hel m push. gi t

Once all plugins are installed, you should see them as available helm commands when doing :

hel m --hel p

6) Install the chartmuseum repository

To align with how the previous release were deployed, we will setup a local chart repository.

To do, download the chartmuseum script and run it as a background task

curl https://raw. githubusercontent.con hel m chartrmuseum mai n/ scripts/get-chartnuseum | bash
nkdir ~/chartmseum
chart nuseum - - port =8080 --storage="1ocal " --storage-1local -rootdir="~/chartstorage" &

you should see the chartmuseum repo starting locally, you can press enter to come back to your terminal

you can now inform helm that a local repo is available for use :

hel mrepo add local http://1ocal host: 8080

Note this is a very basic setup, meaning you'll need to startup your local repo if you shut down your VM or if you exit this terminal, there are other ways to
do it, like using a docker compose to ensure 'it's always on'

Also, you can setup a local database for Helm to store it's deployment (more info on Helm website), this is useful if you want to upgrade and undeploy

charts, now on this setup which is aimed for developpers, the approach is a clean install and wipe if we need to change something so we won't describe
this part here, see last point on how to deploy/undeploy with this setup

7) Install docker

During the processing of the oom helm charts (oom-cert-service component of platform), docker is needed as it is used to create certificates.
Follow the docker install instructions for Ubuntu here : https://docs.docker.com/engine/install/ubuntu/
unless you already have docker, in which case you can skip this part altogether.

Or use snap:

sudo snap install docker

8) Build all oom charts and store them in the chart repo

You should be ready to build all helm charts, go into the oom/kubernetes folder and run a full make

Ensure you have "make" installed:

sudo apt install nake

https://docs.docker.com/engine/install/ubuntu/

Then build OOM

cd ~/ ooni kuber netes
make al |

You can speed up the make skipping the linting of the charts

neke all -e SKIP_LI NT=TRUE

You'll notice quite a few message popping into your terminal running the chartmuseum, showing that it accepts and store the generated charts, that's
normal, if you want, just open another terminal to run the helm commands

Once the build completes, you should be ready to deploy ONAP

9) Tweak oom override file to fine tune deployment based on your VM capacity and component
needs

Before deploying, it's good to decide which ONAP components you need and create an override file. The override file will tune your deployment to your
specific needs.

We have a few considerations to take on our stand alone VM :

1) CPU/Memory might be limited, so be careful on what you enable / disable. K8S 1.19 now properly enforce CPU and memory requests/limits so it is
important to define/override them correctly

2) Timeouts : the more component you enable, the more the liveness probes and readiness probes timeouts may have to be increased, knowing that we
will most likely over commit the VM CPU.

First, here is a very basic override file to enable a very small setup with SDC, we will only enable aaf, portal, SDC and cassandra shared, this should work
on a laptop with enough ram :

copy the content below to a file called onap-honolulu.yaml

d obal configuration overrides.

#

These overrides will affect all helmcharts (ie. applications)
that are listed below and are 'enabled' .

gl obal :
Change to an unused port prefix range to prevent port conflicts
with other instances running within the same k8s cluster
nodePort Prefix: 302
nodePort Prefi xExt: 304
mast er Passwor d: secr et password
ONAP Repository
Uncomrent the following to enable the use of a single docker
repository but ONLY if your repository mirrors all ONAP
docker inmmges. This includes all inages from dockerhub and
any other repository that hosts inages for ONAP conponents.
#repository: nexus3.onap.org: 10001

readi ness check - tenporary repo until inmages migrated to nexus3
readi nessReposi tory: oonk8s
logging agent - tenporary repo until inages mgrated to nexus3

| oggi ngReposi tory: docker.elastic.co

image pull policy
pul | Policy: |fNotPresent

override default nount path root directory
referenced by persistent volumes and log files
persi stence:

nmount Pat h: /dockerdat a-nfs

flag to enabl e debugging - application support required
debugEnabl ed: fal se

Enabl e/ di sabl e and configure helmcharts (ie. applications)
to custonmize the ONAP depl oynent.

aaf:

enabl ed: true

aaf - service:

readi ness:
initial Del aySeconds: 150

cassandr a:

enabl ed: true

replicaCount: 3

config:
cluster_domain: cluster.|ocal
heap:
mex: 1G
mn: 256M
liveness:

initial Del aySeconds: 60

peri odSeconds: 20

ti meout Seconds: 10

successThreshol d: 1

failureThreshol d: 3

necessary to disable |liveness probe when setting breakpoints
in debugger so K8s doesn't restart unresponsive container
enabl ed: true

r eadi ness:
initial Del aySeconds: 120
peri odSeconds: 20
ti meout Seconds: 10
successThreshol d: 1
failureThreshold: 3

portal:
enabl ed: true
sdc:
enabl ed: true
config:

envi ronnent :
vnf RepoPort: 8703
sdc- be:
config:
javaOptions: "-Xnmxlg - Xns512nt
l'iveness:
peri odSeconds: 300
ti neout Seconds: 180
readi ness:
peri odSeconds: 300
ti nmeout Seconds: 240
sdc-fe:
resources:
smal | :
limts:
cpu: 1
menmory: 2G
requests:
cpu: 100m
menory: 500M

You'll notice the tweaks to the timeouts and memory settings and limits, this is mostly what you have to adapt depending on your needs
Once the file is ready you can deploy :

1) First you need to ensure that the onap namespace exists (it now must be created prior deployment)

kubect| create nanespace onap

2) Launch the chart deployment, pay attention to the last parameter, it must point to your override file create above

hel m depl oy onap | ocal /onap --nanespace onap -f ~/onap-honol ul u. yan

The deployment can take a while depending on how many charts you've enabled.
You should see all pods starting up and you should be able to see logs using kubectl, dive into containers etc...

How to undeploy and start fresh

The easiest is to use kubectl, you can clean up the cluster in 3 commands :

kubect| del ete namespace onap
kubect!| delete pv --all
sudo rm-rf /dockerdata-nfs

don't forget to create the namespace again before deploying again (helm won't complain if it is not there, but you'll end up with an empty cluster after if
finishes)

Note : you could also reset the K8S cluster by using the microk8s feature : microk8s reset

but that's a more drastic approach, you would need to reinstall the addons, dump again the config for kubectl etc.... this can be useful if you get weird
behavior though.

10) Enable Ul access

Once all pods are running and all jobs are completed,

You may want to connect to the ONAP Uls locally, to do so you first need to add the following to your /etc/host (adapt the IP address if you use a remote
VM)

for myVM ONAP

127.0.0.1 aaf-gu

127.0.0.1 aai . ui.sinpl edenp. onap. org
127.0.0. 1 appc. api . si npl edeno. onap. org
127.0.0.1 cds. api . si npl edenp. onap. org
127.0.0.1 cdt. api . si npl edenp. onap. org
127.0.0.1 cl anp. api . si npl edenp. onap. org
127.0.0. 1 nbi. api. si npl edeno. onap. org
127.0.0. 1 policy. api.sinpl edeno. onap. org
127.0.0. 1 portal.api.sinpl edenp. onap. org
127.0.0.1 robot-onap. onap.org

127.0.0. 1 sdc. api . fe. si npl edenp. onap. org
127.0.0. 1 sdc. api . si npl edeno. onap. org
127.0.0.1 sdc. wor kfl ow. pl ugi n. si npl edeno. onap. or g
127.0.0.1 so-nonitoring

127.0.0.1 vid. api . si npl edeno. onap. org

You can then access the portal Ul by opening your browser to :

https://portal.api.simpledemo.onap.org:30225/ONAPPORTAL/login.htm

user/pass is cs0008/demo0123456!

Note : Since SDC (and other Uls) are embedded into the portal Ul frame, you browser may complain about trusting its certificate, to work around this issue,
open the SDC Ul directly first (to get your browser to accept the certificate), once done you should be able to open the SDC Ul through the portal. To do
S0, open another tab of your browser to :

https://sdc.api.fe.simpledemo.onap.org:30207/

https://sdc.workflow.plugin.simpledemo.onap.org:30256/

Note : you need to repeat the above for each deployment, as certificates are generated by AAF during startup, certificates will change each time you deploy

You should now be able to use SDC :

& ONAP Portal x e - a8 ®

<« c @ © | & https://portalapi.simpledemo.onap.org:30225/0 TAL/app/applicationsHome - w In 0 @ =

@ Getting Started £ ONAP Uls

B onNAP Portal

Home sbc @

b HOME CATALOG ~ ONBOARD WORKFLOW a &

0

0

0
FOLLOWED PROJECTS 4
Certified

Distributed VFWDT_VPKG 7b5dd90c-1 VFWDT_vFWSNK 58279
VFWDT 2021-03-10 16-03- ebs 2-40¢5

Distributed Certified Certified

11) Full Deployment Override on a single VM

Below is a full blown override file used to run mostly all Honolulu components, this was tested working on Windriver Lab on a VM with 12VCpu and 128G
Ram

Copyright © 2017 Andocs, Bell Canada

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in conpliance with the License.

You may obtain a copy of the License at

#

http://ww. apache. org/|icenses/LI CENSE-2. 0

#

Unless required by applicable law or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.
See the License for the specific |anguage governing perm ssions and
limtations under the License.

d obal configuration overrides.

#

These overrides will affect all helmcharts (ie. applications)

#

that are listed below and are 'enabl ed'.

gl obal :
Change to an unused port prefix range to prevent port conflicts
with other instances running within the same k8s cluster
nodePort Prefix: 302
nodePort Prefi xExt: 304
mast er Passwor d: secr et password
addTest i ngConponents: true
cnpv2Enabl ed: true
flavor: unlimted
ONAP Repository
Uncomrent the following to enable the use of a single docker
repository but ONLY if your repository mirrors all ONAP
docker inmmges. This includes all inages from dockerhub and
any other repository that hosts inmages for ONAP conponents.
#repository: nexus3.onap.org: 10001

readi ness check - tenporary repo until images migrated to nexus3
readi nessReposi tory: oonk8s

1 ogging agent - tenporary repo until inmages migrated to nexus3
| oggi ngReposi tory: docker.elastic.co

image pull policy
pul | Policy: |fNotPresent

override default mount path root directory
referenced by persistent volumes and log files
persi stence:

nmount Pat h: /dockerdat a-nfs

flag to enabl e debugging - application support required
debugEnabl ed: fal se

HHE I T
Enabl e/ di sabl e and configure helmcharts (ie. applications)
to custonmize the ONAP depl oynent.
B T T R I
aaf:
enabl ed: true
aaf - service:
readi ness:
initial Del aySeconds: 150
aai :
enabl ed: true
flavorOverride: unlinited
gl obal :
flavorOverride: unlimted
cassandr a:
replicas: 3
aai - cassandr a:
flavorOverride: unlimted
replicaCount: 3
aai - babel :
flavorOverride: unlimted
aai -data-router:
flavorOverride: unlimted
aai - el asticsearch:
flavorOverride: unlimted
aai - gr aphadm n:
flavorOverride: unlimted
aai - nodel | oader:
flavorQOverride: unlimted
aai - resour ces:
flavorOverride: unlimted
aai - schema- servi ce:
flavorOverride: unlimted
aai - sear ch-dat a:
flavorOverride: unlimted
aai - spar ky- be:
flavorOverride: unlimted
readi ness:
initial Del aySeconds: 150
peri odSeconds: 20
ti meout Seconds: 10
i veness:
ti meout Seconds: 10
aai -traversal:
flavorOverride: unlimted
appc:
enabl ed: false
cassandr a:
enabl ed: true
replicaCount: 3

config:
cluster_domain: cluster.]|ocal
heap:
max: 1G
mn: 256M
|'i veness:

initial Del aySeconds: 60

peri odSeconds: 20

ti meout Seconds: 10

successThreshol d: 1

failureThreshol d: 3

necessary to disable |liveness probe when setting breakpoints
in debugger so K8s doesn't restart unresponsive container
enabl ed: true

r eadi ness:
initial Del aySeconds: 120
peri odSeconds: 20
ti neout Seconds: 10
successThreshol d: 1
failureThreshol d: 3

cds:
enabl ed: true
cl anp:
enabl ed: true
cli:
enabl ed: true
consul
enabl ed: true
contrib
enabl ed: true
awx:
enabl ed: true
net box:
enabl ed: false
dcaegen2

enabl ed: true
dcae- cl oudi fy- manager
readi ness:
periodSeconds: 120
ti neout Seconds: 20
liveness:
ti meout Seconds: 10
drmaap:
enabl ed: true
esr:
enabl ed: fal se
| og:
enabl ed: false
| og- | ogst ash
replicaCount: 1
sni ro-enul at or
enabl ed: fal se
oof :
enabl ed: fal se
nmari adb- gal era
enabl ed: true
nmsh:
enabl ed: true
mul ticl oud
enabl ed: true

nbi

enabl ed: true
platform

enabl ed: true
policy:

enabl ed: true
ponba:

enabl ed: fal se
portal

enabl ed: true
robot :

enabl ed: true

flavor: snal

appcUser name: "appc@ppc. onap. org"
appcPassword: "TBD'

openSt ackKeyStoneUrl: "http://10.12.25. 2: 5000"
openSt ackKeyst oneAPI Ver si on: "v3"

openSt ackPubl i cNet1d: "TBD'
openSt ackTenant 1 d: "TBD'
openSt ackUser Narme: " TBD'
openSt ackUser Domei n: " TBD'
openSt ackProj ect Nane: "TBD'
ubunt ul4l mage: "trusty-server-cloudi ng- and64-di sk1"
ubunt ul6l mage: "xeni al -server-cl oudi ny- and64- di sk1"
openSt ackPrivateNet G dr: "10.0.0.0/16"
openSt ackPrivateNetld: "TBD'
openSt ackPri vat eSubnet 1d: " TBD"
openSt ackSecurityGoup: "TBD'
openSt ackCamNet wor kGi dr Prefi x: "10.0"
dcaeCol I ector | p: "yourhostip"
vnf PubKey: "ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQDKXDgoo3+Wogc UGS
/ 5uUbk81+yczgwCAY8ywTmuQqbNxI Y1oQOYxdMJqUnhi t SXs5S
/ yRUAVOYHWGg2nCs 200A1 Nr P+mx Bl 544AM b9i t Pj Ct gqt E2EW6MmMFGhHB4Sx3Xi 0E7F4VPsh7j aps! wzQ br Qe+MialTGQd4nf EOQaagl XLL
PFf uc7WhhbJbK6Q7r HqZf Rc ONAMXgDoBql ygKei Kwnunddo2RyNT8I j YmyB6buz 7KnM nzo7gB0ukt VTO5FHIRgOCTWHSnor | GBgXgP2aukLOgk1
ph8i At 7uYLf 1kt p+LJI 2gaF6L0/ gl i 9EMVCSLr 1uJ38QBCBf | hkh"
denpArtifactsVersion: "1.4.0"
dempArtifactsRepoUrl: "https://nexus.onap.org/content/repositories/rel eases"
scriptVersion: "1.4.0"
nf sl pAddress: "yourhostip"
config:
openSt ackEncr ypt edPasswor dHere: " TBD'
openSt ackSoEncr ypt edPasswor d: " TBD"
sdc:
enabl ed: true
config:
envi ronnent :
vnf RepoPort: 8703
sdc- be:
config:
javaOptions: "-Xmxlg - Xnms512nt
l'i veness:
peri odSeconds: 300
ti meout Seconds: 180
readi ness:
peri odSeconds: 300
ti meout Seconds: 240
sdc-fe:
resources:
smal | :
limts:
cpu: 1
menory: 2G
requests:
cpu: 100m
menory: 500M
sdnc:
enabl ed: true

replicaCount: 1

nysql :
replicaCount: 1
so:
enabl ed: true
so- cat al og- db- adapter:
config:
openSt ackUser Nane: " TBD'
openSt ackKeySt oneUrl: "http://10.12.25. 2: 5000/ v3"
openSt ackEncr ypt edPasswor dHer e: " TBD"
openSt ackKeyst oneVer si on: " KEYSTONE_V3"
uui :
enabl ed: fal se
vfc:
enabl ed: fal se
vi d:
enabl ed: true
vnf sdk:

enabl ed: true

If you want to use SO / Robot - you need to fill in proper properties in the override, this depends on your openstack instance / tenant

12) Run testsuites

If you have deployed the robot pod, you can perform some tests using the provided scripts in the oom repo

go to the oom/kubernetes/robot folder and run ete-k8s.sh to see the available test suites

cd ~/ oonl kuber net es/ r obot
./ ete-k8s.sh

to run a specific test suite, just provide the namespace and the testsuite tag, below is testing distribution with SDC (beware that some tests require the
availability of several components to succeed)

cd ~/ oonl kuber net es/ r obot
./ ete-k8s.sh onap heal t hdi st

the script will contact the robot pod within the cluster and execute the tests (may take a while)

++ kubect| --nanespace onap exec onap-robot-8569b648b9-5x49x -- /var/opt/ ONAP/ runTags.sh -V /share/config
/robot _properties.py -v GLOBAL_BU LD _NUMBER: 10433 -d /share/l ogs/0002_ete_heal thdist -i healthdist --display 92
Starting Xvfb on display :92 with res 1280x1024x24

Executing robot tests at |og |evel TRACE

Testsuites

/var/ opt/ ONAP/ robot/1ibrary/ param ko/transport.py: 33: CryptographyDeprecati onWarning: Python 2 is no |onger
supported by the Python core team Support for it is now deprecated in cryptography, and will be renoved in a
future rel ease.

from crypt ography. hazmat . backends i nmport defaul t _backend

Test suites. Heal t h-Check :: Test that ONAP conponents are available via basi...
Heal th Distribution Test | PASS |
Testsui tes. Heal t h-Check :: Test that ONAP conponents are available... | PASS |

1 critical test, 1 passed, O failed
1 test total, 1 passed, O failed

Testsuites | PASS |
1 critical test, 1 passed, O failed
1 test total, 1 passed, O failed

Qutput: /share/logs/0002_ete_heal t hdi st/ out put. xm
Log: / shar e/l ogs/ 0002_et e_heal t hdi st/ 1 og. ht nl
Report: /share/l ogs/0002_ete_heal thdi st/ report. htm

if you have enabled Ul access you can see the test logs in a browser by connecting to
https://robot-onap.onap.org:30209

(user/pass is test/test)

¢ ONAP Portal

< > C @

@ Getting Started £S5 ONAP Uls

Pl Index of /logs/ .+

© | £ https://robot-onap.onap.org:30209/logs/

Index of /logs/

Name i Last Modified: Size: Type:

S - Directory
gaea ete DistributeDemoVFWDT/ 2021-Mar-16 16:11:24 - Directory
0882 ete healthdist/ 2021-Mar-11 11:48:23 - Directory
csars/ 2021-Mar-11 11:48:01 - Directory

browse to the test suite you have started and open the folder, click the report.html to see robot test results

© ONAP Portal x Testsuites Report *

<« c @ © £ https://robot-onap.onap.org:3

@ Getting Started £S5 ONAP Uls

st/report.html

Generated
20210311 12:48:22 UTC+01:00
2 minutes 21 seconds ago

Testsuites Report

Critical Tests
All Tests

Summary Information
Status: All tesf
Start Time: 20210311 12:42:11.532
End Time: 20210311 12:48:12.667
Elapsed Time: 00:06:01.135
Log File: log.html
Test Statistics
Total Statistics 4+ Total + Pass Fail Elapsed + Pass / Fail
Critical Tests 1 1 0 00:06:00
All Tests 1 1 0 00:06:00
Statistics by Tag + Total + Pass Fail Elapsed Pass / Fail
healthdist 1 1 0 00:06:00
Statistics by Suite + Total + Pass Fail Elapsed + Pass / Fail
Testsuites 1 1 i} 00:06:01
Tesmsuites. Health-Check 1 1 0 00:06:01
Test Details
Totals Tags Suites Search
Type:

	Deploy OOM and SDC (or ONAP) on a single VM with microk8s - Honolulu Setup

