Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Contents

Table of Contents

Objectives

The specification aims to define and standardize an information model which can drive cloud agnostic abstraction across various cloud provider platforms. The specification includes definitions of information objects and their relationships as they represent an individual infrastructure resource and aggregations classes.

Representations can be modelled for reservation, allocation and utilization for all infrastructure resources.

Three core representations are envisioned:

  • Infrastructure Class - Representation for a NFVI resource, its information model, relationships, hierarchies, and aggregations.

  • Cloud Capability Class - Representation for cloud profiles and capabilities including technology, architecture, hardware, configurations, and so on.

  • Application Class - Representation for various workloads and their compositions to deliver end-to-end services such as vEPC, vIMS, vCPE, etc. This is out of scope for this specification.

Business Context

In the current solution landscape, Multi-vendor Cloud (OpenStack-based, VMware VIO, Microsoft Azure etc.) management involves a Cloud-specific Service Provider Design time (on-boarding, infrastructure policy authoring etc.), Deployment time (workload management etc.), Operational time (data management etc.).

This specification aims to address the above challenge by standardizing the information model for various cloud objects (aggregates and atomic) and cloud capabilities. With this approach, service providers can benefit from on-boarding clouds once, then flexibly distribute and life-cycle manage workload across different cloud variants (Internal IT, NFV, Public Clouds).

The information model is consumed by various actors in the operational landscape to carry out lifecycle management and operational functions. As such the information model for the infrastructure class is split into an aggregate and atomic entities to meet the objective of the various actors. The finer granularity telemetry information is typically used by monitoring and analytical systems for decisioning and closed-loop optimizations. Inventory management systems could also be interested in such granularities. Aggregate entities in contrast are are more suitable for actors such as workload placement functions to make dynamic decisions, capacity planning, service orchestration, for example.

Image Added

In addition to individual infrastructure level telemetry, the infrastructure cloud platform presents aggregate view as a provider of resources including available, used, and step-size; allocations assigned including reservations, limits, and share; and utilization to represent current resource consumptions.


Key Requirements

To support latency-sensitive, high-bandwidth network functions and applications driven by 5G, Edge Computing, VoLTE use cases some of the key requirements from a Cloud Infrastructure perspective are

...