Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Use Case BlueprintKey UpdatesBenefits
5G

E2E Network Slicing

(a new E2E use case for Frankfurt, we'd also like to apply to publish a separate Blueprint White Paper for E2E Network Slicing use case, same as the community did for other use cases in every release)

5G Network Slicing is one of the key features of 5G. The essence of Network Slicing is in sharing network resources (PNFs, VNFs, CNFs) while satisfying widely varying and sometimes seemingly contradictory requirements to different customers in an optimal manner. Same network is expected to provide different Quality of Experience to different consumers, use case categories and industry verticals including factory automation, connected home, autonomous vehicles, smart cities, remote healthcare, in-stadium experience and rural broadband. An End-to-End Network Slice consists of RAN, Transport and Core network slice sub-nets. This Use Case intends to demonstrate the modeling, orchestration and assurance of a simple network slice (e.g. eMBB). While 3GPP standards are evolving and 5G RAN and core are being realized, this Use Case will start with realizing an E2E Network Slice with a simple example of a 5G RAN, Core and Transport Network Slice sub-nets. It will also align with relevant standard bodies (e.g., 3GPP, ETSI, TM Forum) as well as other open initiatives such as O-RAN where relevant, with respect to both interfaces as well as the functional aspects.

Key features in Frankfurt:

  • Tenants and network operators can order slice-based services
  • Enables network slice creation as well as reuse
  • Supports many of the slice lifecycle management operations

Key capabilities added for ONAP Frankfurt release:

  • ONAP Frankfurt provides basic capabilities for Network Slice Orchestration
  • Supports Network Slice lifecycle operations of E2E Slice Design and Creation, Activation, Deactivation and Termination
  • Provides CSMF and NSMF functionality implemented within ONAP
  • Supports E2E Slice design including design of Communication Service, Service Profile and Network Slice Template
  • Supports selection of suitable NST and suitable NSI, covering the scenario of new NSI creation by providing suitable slice profile
  • Interacts with an external Core NSSMF

This use case is a multi release effort and we will continue to provide more enhancements and features based on what we've implemented in Frankfurt in the subsequent releases.

  1. The ONAP based E2E Network Slicing solution allows a service provider to manage the slices and its constituents by leveraging ONAP existing capabilities.
  2. enables the slice-consumer to request for and activate a network slice on-demand without being concerned about network internals, which is very essential for industry-vertical
  3. An operation guidance will be provided on ONAP wiki in which explicit instructions are provided to help any interested parties to experience ONAP based E2E Network slicing management.



CCVPN

Adding two extension functions / sub use cases for Frankfurt.

  1. End-to-end E-LINE services across the domains over OTN NNI handover. The Frankfurt demonstration includes L1(OTN) and L2(ETH) Topology discovery from multiple domains controllers with in an operator and provide VPN service provision in OTN and ETH network. Use case specific developments have been realized in SO, OOF, A&AI, SDN-C and U-UI components
  2. Multi-Domain Optical Network Service(MDONS). The MDONS sub use-case aims to automate the design, activation & operations resulting from an optical transport (L0/L1) service request exchange between service providers and/or independent operational entities within a service provider network by delivering E2E optical orchestration capabilities into ONAP.Use case specific developments have been realized in SDC, SO, A&AI, SDN-C and U-UI components
  1. E-LINE over OTN NNI extends upon the CCVPN use case by incorporating support for L1/L2 network management capabilities leveraging open standards& common data models such as the IETF ACTN-based transport YANG models.
  2. MDONS extends upon the CCVPN use-case by incorporating support for L0/L1 end customer services that span service provider domains, with a plan to support inter-carrier optical services.
  3. MDONS defines a unified optical service model based upon OpenROADM, T-API, MEF 63, and MEF 64 models, and allows integration of optical domain controllers using either the Open ROADM or TAPI service models.
BBSIn Frankfurt, the BBS team focused mainly on bug fixes, improving the BBS use case multi-vendor support and documentation. This is based on feedback received from many showcases during the previous ONAP releases. The BBS use case continues providing inputs to standardization bodies like BBF (Broadband Forum) in the context of the CloudCO framework interfaces definition.

1. Establishment of a subscriber's HSIA (High Speed Internet Access) service from an ONT to the Internet drain

2. Support the change of location for ONT devices (Nomadic ONT devices)

2.1 PNF (Re-)Registration for an ONT
2.2 Service location modification that is detected by ONAP's analytic and enforced by APEX policy engine

  O-RAN HarmonizationSee 5G
Tactical Use Case Blueprint

PNF support

See 5G
Change Management

Control LoopDaaSSee aboveHPA
K8s cloud region

Significant progress in supporting

  • Distributed Applications and Distributed network functions.
  • Multi-tenancy 
  • Multi party K8s Clusters 
  • Provider networks and Multiple Virtual networks on per Cluster
  • Complex applications
  • Various deployment intents (Generic Placement intent, Network workload intent)
  • Logical Clouds for  network slices with soft-isolation.

Scaling

...

SubcommitteeKey UpdatesBenefits
Arch SubcommitteeNo new updates
Security Subcommittee

ONAP security continued to improve in the Frankfurt release.

  • Automated integration tests of security best practices resulting in the discovery and removal of many vulnerabilities.
  • Eliminated all but 3 of the 21 ONAP CVEs improving the security posture of the Frankfurt release.
  • Increased Kubernetes security by running all pods as a non-root identity except for those documented.
  • Significant progress in converting HTTP ports to HTTPS, with external HTTP interfaces documented.
  • Upgrades of open source dependencies to latest versions resulting in a decrease of vulnerabilities in some projects; CLAMP eliminated all direct dependencies vulnerabilities.
  • Progress with Java 11 migration for few projects, with strong commitment to complete migration in the Guilin release.  
  • Collaborated with ODL creating an ONAP customized image with fewer vulnerabilities.
  • Implementation of Sonar Cloud and meeting code coverage scanning targets resulting in code security improvements. 

Modeling SubcommitteeSee above
Standards HarmonizationSee Prague slides 
Other Activities
OVPOngoing
CDS

Design Time

  • CDS GUI Designer Client [New] - Phase 1 of 3
    • Package List Search
    • Package Creation
      • Meta Data Definition 
      • Template & Mapping Management
      • Script Management
      • Imports
      • Designer Mode
      • Scripting Mode

Run Time 

  1. Enable Blueprint Processor Rolling Upgrade leveraging Hezelcast
  2. Add PY-Executor 3.6 Microservice 
  3. Add Error Catalog Library & integration with Blueprint processor
  4. Certify the blueprint processor imperative workflow orchestration for provisioning activities. 
  5. Prioritization Service
  6. CLI Executor 
  7. Bootstrap API for loading models, dictionary & CBA
  8. Audit Service 
  9. Added gRPC TLC Service & Properties Implementation 





ONAP Component integration 

  1. CLAMP integration with CDS via REST API for cba action specification retrieval for a given CBA Name & Version. 
  2. Policy integration with CDS Blueprint processor microservice for LCM action execution. 
  3. SO Controller Execution Building Block integration with CDS for controller action execution in generic.


Use Case: 

  1. E2E Automation for instantiation& Post instantiation via SO building & CDS for vLB VNF 
  2. Control Loop of vFW VNF use case with Config Modify via DCAE, CLAMP  Policy, CDS
  3. PNF Plug & Play with Netconf execution using CDS CBA package
  4. PNF Software upgrade using CDS CBA Package
  5. E2E Automation for instantiation via SO building, MultiCloud & CDS for CNF. 
  6. 5G NRM Integration using CDS Package. 


Design Time

  1. Simplify the CBA Package creation/.management via CDS UI.






Run Time

  1. Upgrade clients individually with no interruptions to other clients
  2. Support a python executor 3.6 to execute python scripts via the CDS package. 
  3. Have a consistent way of report errors for all the CDS components and microservices. 
  4. Enable operation/designer for creating custom workflow and embedding customer workflow to the CDS CBA Package for parallel or sequential execution thus enabling faster delivery product to market. 
  5. CDS should provide Correlation-based message prioritization based on Kafka Stream Consumption.
  6. Enable operations to execute any CLI based commands for PNF & VNF. 
  7. CDS load model types, dictionaries, and CBA multiple times based on cluster size. This commits avoid autoloading, and provides an API to bootstrap, if necessary.
  8. Allows external components to trigger action(s) based on CDS execution and also gives visibility on every requests that was sent to CDS.


ONAP Component integration 

  1. Render the CBA Action in Clamp GUI without code changes. 
  2. ONAP management of lifecycle action in generic & model-driven mechanism. 
  3. ONAP Orchestration of controller execution model-driven mechanism. 




Use Case

  • Pivot to a model-driven implement of provisioning & controller management using a network intent package via CDS implement for all the use cases. 


.



NOTE: 

  • Controller Design Studio [CDS]
  • Controller Blueprint Archive [CBA]

...

S3P ActivityKey UpdatesBenefits
StabilitySee Catherine's comment below
ScalabilitySee Catherine's comment below
PerformanceSee Catherine's comment below
ManageabilitySee Catherine's comment below
ResilienceSee Catherine's comment below
UsabilitySee Catherine's comment below
Code Footprint ReductionSee Catherine's comment below