Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Reverted from v. 1

CBA

The Controller Blueprint Archived is the overall service design, fully model-driven, package needed to automate the instantiation and any config provisioning operation, such as day0 or day2 configuration.

The CBA is .zip file, comprised of the following structure:

Code Block
.
├── Definitions
│   ├── blueprint.json
│   ├── artifact_types.json
│   ├── data_types.json
│   ├── node_types.json
│   ├── policy_types.json
│   ├── relationship_types.json
│   ├── resources_definition_types.json
│   └── *-mapping.json
├── Plans
│   ├── ResourceAssignment.xml
│   ├── ConfigAssign.xml
│   └── ConfigDeploy.xml
├── Scripts
│   └── python
│

This guide is geared to provide information regarding  how to do service design to automate instantiation and day0 configuration.

Installation

ONAP is meant to be deployed within a Kubernetes environment. Hence, the de-facto way to deploy CDS is through Kubernetes.

ONAP also package Kubernetes manifest as Chart, using Helm.

Prerequisite

https://docs.onap.org/en/latest/guides/onap-developer/settingup/index.html

Setup local Helm

Code Block
titlehelm repo
collapsetrue
helm serve &
helm repo add local http://127.0.0.1:8879

Get the chart

Make sure to checkout the release to use, by replacing $release-tag in bellow command

Code Block
titlegit clone
collapsetrue
git clone https://gerrit.onap.org/r/oom
git checkout tags/$release-tag
cd oom/kubernetes
make cds

Install CDS

Code Block
titlehelm install
collapsetrue
helm install --name cds cds

Result

Code Block
titlekubectl output
collapsetrue
$ kubectl get all --selector=release=cds
NAME                    ├── ConfigDeployExample.py
│       ├── ResourceResolutionExample.py
│       └── __init__.py
├── TOSCA-Metadata
│   └── TOSCA.meta
└── Templates
  READY     STATUS    RESTARTS   AGE
pod/cds-blueprints-processor-54f758d69f-p98c2    0/1       Running   1          2m
pod/cds-cds-6bd674dc77-4gtdf                     1/1       Running   0          2m
pod/cds-cds-db-0                                 1/1       Running   0          2m
pod/cds-controller-blueprints-545bbf98cf-zwjfc   1/1       Running   0          2m
NAME                            TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)             AGE
service/blueprints-processor    ClusterIP   10.43.139.9     <none>        8080/TCP,9111/TCP   2m
service/cds                     NodePort    10.43.254.69    <none>        3000:30397/TCP      2m
service/cds-db                  ClusterIP   None            <none>        3306/TCP            2m
service/controller-blueprints   ClusterIP   10.43.207.152   <none>        8080/TCP            2m
NAME                                        DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/cds-blueprints-processor    1         1         1            0           2m
deployment.apps/cds-cds                     1         1         1            1           2m
deployment.apps/cds-controller-blueprints   1         1         1            1           2m
NAME                                                   DESIRED   CURRENT   READY     AGE
replicaset.apps/cds-blueprints-processor-54f758d69f    1         1         0         2m
replicaset.apps/cds-cds-6bd674dc77                     1         1         1         2m
replicaset.apps/cds-controller-blueprints-545bbf98cf   1         1         1         2m
NAME                          DESIRED   CURRENT   AGE
statefulset.apps/cds-cds-db   1         1         2m

Design time

Bellow are the requirements to enable automation for a service within ONAP.

For instantiation, the goal is to be able to automatically resolve all the HEAT environment variables, called cloud parameters.

For post-instantiation, the goal is to configure the VNF with initial configuration.

Prerequisite

Gather what you need:

...

idprerequisite
Card
labelinstantiation

Have the HEAT template along with the HEAT environment file.

...

labelpost-instantiation

Have the configuration template to apply on the VNF.

  1. XML for NETCONF
  2. JSON / XML for RESTCONF
  3. not supported yet - CLI

...

Create and fill-in the a table for all the dynamic values

└── *-template.vtl


Data Dictionary

A data dictionary defines a specifc resource that can be resolved using the bellow the supported sources.

A data dictionary can support multiple resources.

The main goal of data dictionary is to define generic entity that could be shared accross the service catalog.

Resolution sources

Input

Default

SQL

Default (SDNC DB)

Generic

REST

Default (SDNC MDSAL)

Generic

Capability (scripts)

Python

Kotlin script

Netconf (through Python)

Workflow

A workflow defines an overall action to be taken for the service; it can be composed of a set of node to execute. Currently, workflows are backed by Directed Graph engine.

A CBA can have as many workflow as needed.

Required workflows

The following workflows are contracts being

While doing so, identify the resources using the same process to be resolved; for instance, if two IPs has to be resolved through the same IPAM, the process the resolve the IP is the same.

...

labelinstantiation

Here are the information to capture for each dynamic cloud parameters

...

idhow to resolve
Card
labelInput

Value will be given as input in the request.

Card
labelDefault

Value will be defaulted in the model.

...

labelREST

Value will be resolved by sending a query to the REST system

...

Supported Auth type

...

idauth
Card
labelToken

Use token based authentication

  • token
Card
labelBasic

Use basic authentication

  • username
  • password
Card
labelSSL

Use SSL basic authentication

  • keystore type
  • truststore
  • truststore password
  • keystore
  • keystore password

...

labelSQL

Value will be resolved by sending a SQL statement to the DB system

...

jdbc:mysql://<host>:<port>/db

...

These are all the required parameters to process the resolution of that particular resources.

...

idinput
Card
labelREST

List of placeholders used for

  • URI
  • Payload
Card
labelDB

List of placeholders used for

  • SQL statement

...

This is the expected result from the system, and you should know what value out of the response is of interest for you.

If it's a JSON payload, then you should think about the json path to access to value of interest.

Data dictionary

What is a data dictionary?

For each unique identified dynamic resource, along with all their ingredients, we need to create a data dictionary.

Here are the modeling guideline: CDS Modeling Concepts

FIX ME - add generic DD model

Bellow are examples of data dictionary for each resource source

...

idDD

...

labelinput

Value will be pass as input.

Code Block
themeEclipse
{
    "tags": "unit-number",
    "name": "unit-number",
    "property": {
      "description": "unit-number",
      "type": "string"
    },
    "updated-by": "adetalhouet",
    "sources": {
      "input": {
        "type": "source-input"
      }
    }
  }

...

labeldefault

Value will be defaulted.

Code Block
themeEclipse
{
  "tags": "prefix-id",
  "name": "prefix-id",
  "property" :{
    "description": "prefix-id",
    "type": "integer"
  },
  "updated-by": "adetalhouet",
  "sources": {
    "default": {
      "type": "source-default"
    }
  }
}

...

labelrest

Value will be resolved through REST.

Modeling reference: CDS Modeling Concepts

In this example, we're making a POST request to an IPAM system with no payload.

Some ingredients are required to perform the query, in this case, $prefixId. Hence It is provided as an input-key-mapping and defined as a key-dependencies. Please refer to the modeling guideline for more in depth understanding.

As part of this request, the expected response will be as bellow. What is of interest is the address field, as this is what we're trying to resolve.

Code Block
themeEclipse
titleresponse
collapsetrue
{
    "id": 4,
    "address": "192.168.10.2/32",
    "vrf": null,
    "tenant": null,
    "status": 1,
    "role": null,
    "interface": null,
    "description": "",
    "nat_inside": null,
    "created": "2018-08-30",
    "last_updated": "2018-08-30T14:59:05.277820Z"
}

To tell the resolution framework what is of interest in the response, the path property can be used, which uses JSON_PATH, to get the value.

Code Block
themeEclipse
titlecreate_netbox_ip_address
{
    "tags" : "oam-local-ipv4-address",
    "name" : "create_netbox_ip",
    "property" : {
      "description" : "netbox ip",
      "type" : "dt-netbox-ip"
    },
    "updated-by" : "adetalhouet",
    "sources" : {
      "primary-config-data" : {
        "type" : "source-rest",
        "properties" : {
          "type" : "JSON",
          "verb" : "POST",
          "endpoint-selector" : "ipam-1",
          "url-path" : "/api/ipam/prefixes/$prefixId/available-ips/",
          "path" : "/address",
          "input-key-mapping" : {
            "prefixId" : "prefix-id"
          },
          "output-key-mapping" : {
            "address" : "address"
          },
          "key-dependencies" : [ "prefix-id" ]
        }
      }
    }
  }

...

labeldb

Value will be resolved through a database.

Modeling reference: CDS Modeling Concepts

In this example, we're making a SQL to the primary database.

Some ingredients are required to perform the query, in this case, $vfmoudleid. Hence It is provided as an input-key-mapping and defined as a key-dependencies. Please refer to the modeling guideline for more in depth understanding.

As part of this request, the expected response will be as put in value. In the output-key-mapping section, that value will be mapped to the expected resource name to resolve.

Code Block
themeEclipse
titlevf-module-type
{
  "name": "vf-module-type",
  "tags": "vf-module-type",
  "property": {
    "description": "vf-module-type",
    "type": "string"
  },
  "updated-by": "adetalhouet",
  "sources": {
    "primary-db": {
      "type": "source-primary-db",
      "properties": {
        "type": "SQL",
        "query": "select sdnctl.demo.value as value from sdnctl.demo where sdnctl.demo.id=:vfmoduleid",
        "input-key-mapping": {
          "vfmoduleid": "vf-module-number"
        },
        "output-key-mapping": {
          "vf-module-type": "value"
        },
        "key-dependencies": [
          "vf-module-number"
        ]
      }
    }
  }
}

...

labelcapability

Value will be resolved through a the execution of a script.

Modeling reference: CDS Modeling Concepts

In this example, we're making use of a Python script.

Some ingredients are required to perform the query, in this case, $vf-module-type. Hence It is provided as a key-dependencies. Please refer to the modeling guideline for more in depth understanding.

As part of this request, the expected response will set within the script itself.

Code Block
themeEclipse
titleinterface-description
{
  "tags": "interface-description",
  "name": "interface-description",
  "property": {
    "description": "interface-description",
    "type": "string"
  },
  "updated-by": "adetalhouet",
  "sources": {
    "capability": {
      "type": "source-capability",
      "properties": {
        "script-type": "jython",
        "script-class-reference": "Scripts/python/DescriptionExample.py",
        "instance-dependencies": [],
        "key-dependencies": [
          "vf-module-type"
        ]
      }
    }
  }
}

The script itself is as follow. The key is to have the script class derived from the framework standards.

In the case of resource resolution, the class to derive from is AbstractRAProcessor

It will give the required methods to implement: process and recover, along with some utility functions, such as set_resource_data_value or addError.

These functions either come from the AbstractRAProcessor class, or from the class it derived from.

FIX ME - give more information about scripting

Code Block
themeEclipse
titleScripts/python/DescriptionExample.py
collapsetrue
#  Copyright (c) 2019 Bell Canada.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from abstract_ra_processor import AbstractRAProcessor
from blueprint_constants import *
from java.lang import Exception as JavaException

class DescriptionExample(AbstractRAProcessor):

    def process(self, resource_assignment):
        try:
            # get dependencies result
            value = self.raRuntimeService.getStringFromResolutionStore("vf-module-type")
            
            # logic based on dependency outcome
            result = ""
            if value == "vfw":
                result = "This is the Virtual Firewall entity"
            elif value == "vsn":
                result = "This is the Virtual Sink entity"
            elif value == "vpg":
                result = "This is the Virtual Packet Generator"

            # set value for resource getting currently resolved
            self.set_resource_data_value(resource_assignment, result)

        except JavaException, err:
          log.error("Java Exception in the script {}", err)
        except Exception, err:
          log.error("Python Exception in the script {}", err)
        return None

    def recover(self, runtime_exception, resource_assignment):
        print self.addError(runtime_exception.getMessage())
        return None


Workflows

The following workflows are contracts established between SO, SDNC and CDS to cover the instantiation and the post-instantiation use cases.

resource-assignment

This action is meant to assign resources needed to instantiate the service. The goal is to resolved all the HEAT environment variables.

This action is triggered by Generic-Resource-API (GR-API) within SDNC as part of the AssignBB orchestrated by SO. Hence it will be triggered for each VNF(s) and VF-Module(s).

In order to know for which entity the action is triggeredwhat to resolved, one input is required, that is the artifact prefix (see bellow for explanation).

...

For each VNF and VF-Module comprising the service, a combinaison of a template and mapping is needed.

The requirement is as follow for VNF:

${vnf-name}-template
${vnf-name}-mapping

...

${vnf-name} and ${vf-module-label} is what we call the artifact prefix, so the requirement could be seen as follow:

${artifact-prefix}-template
${artifact-prefix

...

}-mapping
template

The template has to be a resource accumulator template; that be composed of the following sections:

  • resource-accumulator-resolved-data: defines all the resources that can be resolved directly from the context. It expresses a direct mapping between the name of the resource and its value.

    Code Block
    titleRA resolved data
    collapsetrue
      "resource-accumulator-resolved-data": [
        {
          "param-name": "service-instance-id",
          "param-value": "${service-instance-id}"
        },
        {
          "param-name": "vnf_id",
          "param-value": "${vnf-id}"
        }
      ]


  • capability-data: defines what capability to use to create a specific resource, along with the ingredients required to invoke the capability and the output mapping.

    Code Block
    titleRA capability payload
    collapsetrue
        {
          "capability-name": "netbox-ip-assign",
          "key-mapping": [
            {
              "payload": [
                {
                  "param-name": "service-instance-id",
                  "param-value": "${service-instance-id}"
                },
                {
                  "param-name": "prefix-id",
                  "param-value": "${private-prefix-id}"
                },
                {
                  "param-name": "vf-module-id",
                  "param-value": "${vf-module-id}"
                },
                {
                  "param-name": "external_key",
                  "param-value": "${vf-module-id}-vpg_private_ip_1"
                }
              ],
              "output-key-mapping": [
                {
                  "resource-name": "vpg_private_ip_1",
                  "resource-value": "${vpg_private_ip_1}"
    "
                }
              ]
            }
          }]
              ]
            }
          ]
        }}


mapping

Defines the contract of each resource to be resolved. Each placeholder in the template must have a corresponding mapping definition.

A mapping is comprised of:

  • name
  • required / optional
  • type (support complex type)
  • dictionary-name
  • dictionary-source
  • dependencies: this allows to make sure given resources get resolved prior the resolution of the resources defining the dependency.

The dictionary fields reference to a specific data dictionary.

scripts

If any of the mapping uses a source capabbility to resolve a parameters.

config-assign

This action is meant to assign all the resources and mesh the templates needed for the configuration to apply post-instantiation.

...

Combinaison of templates with respective mappings

Scripts if needed

config-deploy

This action is meant to push the configuration templates defined during the config-assign step for the post-instantiation.

...

Scripts using Netconf or Restconf to push configure the network element.