Existing Optimization Models
Minimize an unweighted value
Minimize a weighted value
Maximize an unweighted value
Maximize a weighted value
Minimize the sum of unweighted values
Minimize the sum of weighted values
New Optimization Model
Objective Function Object
Attribute | Required | Content | Values | Description |
---|---|---|---|---|
goal | Y | String | minimize, maximize | The goal of the optimization |
operation_function | Y | Operation function Object | The operation function that has to be optimized |
Operation function object
Attribute | Required | Content | Values | Description |
---|---|---|---|---|
operator | Y | String | sum, min, max | The operation which will be a part of the objective function |
operands | Y | List of operand object | EIther an operation-function or a function | The operand on which the operation is to be performed. The operand can be an attribute or result of a function |
operation-function operand object
Attribute | Required | Content | Values | Description |
---|---|---|---|---|
normalization | N | normalization object | Set of values used to normalize the operand | |
weight | N | Decimal | Default: 1.0 | Weight of the function |
operation_function | N | operation function object |
function operand object
Attribute | Required | Content | Values | Description |
---|---|---|---|---|
normalization | N | normalization object | Set of values used to normalize the operand | |
weight | N | Decimal | Default: 1.0 | Weight of the function |
function | N | String | distance_between, latency_between, attribute | Function to be performed on the parameters |
fucntion_params | N | dict | parameters on which the function will be applied. The parameters will change for each function. |
Normalization object
Attribute | Required | Content | Values | Description |
---|---|---|---|---|
start | Y | Decimal | Start of the range | |
end | Y | Decimal | End of the range |
JSON Schema
Examples
1. Minimize an attribute of the demand
2. Minimize the sum of the distance between the demand and the customer location.
objective function - distance_between(demand, location) + distance_between(demand, location)
Scenario:
Minimize the sum of latencies of slice subnets
objective function - latency(demand) + latency(demand)
Scenario:
Max [ sum ( W_bw * min (ran_nssi_bw, core_nssi_bw, tr_nssi_bw), 1/(W_lat * ( sum (w1 * ran_nssi_lat, w2 core_lat, W3* tn_lat)) ) ]
normalization:
function(value, range(start, end), weight)
All ranges are converted to 0 to 1. The inverse operation is not needed since it is already implied in the range.
normalized value = (value - start) / (end-start)
Eg:
latency range: 50 ms to 5 ms
candidate latency | Normalized value |
---|---|
20 ms | 0.667 |
40 ms | 0.222 |
throughput range: 100 Mbps to 1000Mbps
candidate throughput | Normalized value |
---|---|
300 Mbps | 0.222 |
800 Mbps | 0.778 |
1 Comment
Shankaranarayanan Puzhavakath Narayanan
krishna moorthy, Thanks for listing these out. For the template/interface, these are good to begin with. In the implementation, we could fold the weighted and non-weighted case into same code block. This can be done by having default weight of 1 for all operands in the objective function. If the template provides a weight, we'd override the default with the weight provided. This way, the implementation can always assume a weight to be available. Please let me know if this makes sense.