Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

TOPICCONTACTS
5G PNF SERVICE MODEL
Standard Defined VES Event (ORAN/ONAP/3GPP Harmonization)

Damian Nowak   Marge Hillis

5G OOF SON use case

N.K. Shankar, Swaminathan Seetharaman   

End-to-End Network Slicing use case

Lin @Lin Meng, Swaminathan Seetharaman 

Smart Operator Intent Translation in UUI based on IBN - R8 5G Slicing SupportDong Wang




...

5G OOF SON use case

R8 PRESENTATION:

ITEMDETAILS
Presentation
Recording mp4
Audio only

Executive Summary

SON (Self-Organizing Networks) functionality is an essential part of existing 4G mobility networks, and will be even more critical for 5G. SON enables automation to improve network performance and efficiency, improve user experience, and reduce operational expenses and complexity. The objective of the OOF-SON (new name for OOF-PCI) use case is to develop an ONAP-based SON platform using the ONAP Optimization Framework (OOF). We have taken a phased approach since SON is complex, and SON for 5G is still evolving. We started with the Physical Cell Identity (PCI) optimization SON use case in Casablanca, then added some centralized Automated Neighbor Relations (ANR) aspects in Dublin. For Frankfurt, we will address gaps such as PCI assignment during new cell addition, alignment with RAN inventory, etc., In addition, we aim to have enhancements such as: additional optimization functionality (e.g. include the use of AI/ML), use of control loop co-ordination in Policy, and alignment with industry trends for open interfaces and open models for the RAN interactions.

Business Impact

SON is an essential feature in mobility networks, and relevant to every operator. Any ONAP-based network deployment for 5G will benefit from an ONAP-based SON solution, which provides a disaggregation of SON functions into modules aligned with the ONAP architecture. Operators and vendors will both benefit from the ability of vendors to bring best-in-class solutions to each module, while leveraging the benefits of a community-supported open platform. This will enable faster development of innovative solutions. The approach taken could very well be evolved to address SON use cases whose scope extends beyond just the RAN.

Business Markets

SON for 5G is relevant to all 5G operators and markets.

Funding/Financial Impacts

SON functions reduce Opex since the automated self-organizing functions are an efficient approach to continuously optimize network configurations to improve performance and respond to network conditions.

Organization Mgmt, Sales Strategies

There are no additional organizational management or sales strategies for this beyond whatever is required for ONAP deployment to support 5G.


End-to-end Network Slicing use case

R8 PRESENTATION:

ITEMDETAILS
Presentation
Recording mp4
Audio only

Executive Summary: 5G Network Slicing is one of the key features of 5G. The essence of Network Slicing is in sharing network resources (PNFs, VNFs, CNFs) while satisfying widely varying and sometimes seemingly contradictory requirements to different customers in an optimal manner. Same network is expected to provide different Quality of Experience to different consumers, use case categories and industry verticals including factory automation, connected home, autonomous vehicles, smart cities, remote healthcare, in-stadium experience and rural broadband. An End-to-End Network Slice consists of RAN, Transport and Core network slice sub-nets. This Use Case intends to demonstrate the modeling, orchestration and assurance of a simple network slice (e.g. eMBB). While 3GPP standards are evolving and 5G RAN and core are being realized, this Use Case will start with realizing an E2E Network Slice with a simple example of a 5G RAN, Core and Transport Network Slice sub-nets. It will also align with relevant standard bodies (e.g., 3GPP, ETSI, TM Forum) as well as other open initiatives such as O-RAN where relevant, w.r.to both interfaces as well as the functional aspects.

Business Impact: Network Slicing is a feature that almost every service provider will leverage. It allows a service provider to improve their network efficiency by maximizing the network throughput more tailored to each user's use of the network. It is seen as an imperative for efficient and optimal use of their network. This will be particularly relevant as 5G is expected to have upwards of 10,000x the traffic load over 4G and 20GB peak data rates.

Business Markets: Network Slicing, for this use case, is specifically aimed at a 5G access, core and transport. In the future, this might be extended to other domains or applications such as fixed-wireless convergence, Wi-Fi access, all aspects of transport including fronthaul, or unified network management orchestration. Network Slicing functionality is what almost every wireless service provider will inevitably find valuable. The concepts and modeling work being done for Network Slicing will find applications in other areas as well. (Industries) Some applications and industries such as smart cities, remote maintenance, video streaming vs life-saving first-responder type applications will demand different requirements from Network slicing. (Markets/Regions) There are no regional specific aspects to Network Slicing.

Funding/Financial Impacts: Network slicing engenders the optimal use of resources for a Network. Thus, this represents OPEX savings for a service provider.

Organization Mgmt, Sales Strategies: There is no additional organizational management or sales strategies for this use case outside of a service providers "normal" ONAP deployment and its attendant organizational resources from a service provider.

Smart Operator Intent Translation in UUI based on IBN - R8 5G Slicing Support

...