You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 104 Next »

This guide is geared to provide information regarding  how to build a CBA.


    Installation

    ONAP is meant to be deployed within a Kubernetes environment. Hence, the de-facto way to deploy CDS is through Kubernetes.

    ONAP also package Kubernetes manifest as Chart, using Helm.

    Prerequisite

    https://docs.onap.org/en/latest/guides/onap-developer/settingup/index.html

    Setup local Helm

    helm repo
    helm init --history-max 200 # To install tiller to target Kubernetes if not yet installed
    helm serve &
    helm repo add local http://127.0.0.1:8879

    Get the chart

    Make sure to checkout the release to use, by replacing $release-tag in bellow command

    git clone
    git clone https://gerrit.onap.org/r/oom
    git checkout tags/$release-tag
    cd oom/kubernetes
    make common
    make cds

    Install CDS

    helm install
    helm install --name cds cds

    Result

    kubectl output
    $ kubectl get all --selector=release=cds
    NAME                                             READY     STATUS    RESTARTS   AGE
    pod/cds-blueprints-processor-54f758d69f-p98c2    0/1       Running   1          2m
    pod/cds-cds-6bd674dc77-4gtdf                     1/1       Running   0          2m
    pod/cds-cds-db-0                                 1/1       Running   0          2m
    pod/cds-controller-blueprints-545bbf98cf-zwjfc   1/1       Running   0          2m
    NAME                            TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)             AGE
    service/blueprints-processor    ClusterIP   10.43.139.9     <none>        8080/TCP,9111/TCP   2m
    service/cds                     NodePort    10.43.254.69    <none>        3000:30397/TCP      2m
    service/cds-db                  ClusterIP   None            <none>        3306/TCP            2m
    service/controller-blueprints   ClusterIP   10.43.207.152   <none>        8080/TCP            2m
    NAME                                        DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
    deployment.apps/cds-blueprints-processor    1         1         1            0           2m
    deployment.apps/cds-cds                     1         1         1            1           2m
    deployment.apps/cds-controller-blueprints   1         1         1            1           2m
    NAME                                                   DESIRED   CURRENT   READY     AGE
    replicaset.apps/cds-blueprints-processor-54f758d69f    1         1         0         2m
    replicaset.apps/cds-cds-6bd674dc77                     1         1         1         2m
    replicaset.apps/cds-controller-blueprints-545bbf98cf   1         1         1         2m
    NAME                          DESIRED   CURRENT   AGE
    statefulset.apps/cds-cds-db   1         1         2m

    CDS Design time

    Bellow are the requirements to enable automation for a service within ONAP.

    For instantiation, the goal is to be able to automatically resolve all the HEAT/Helm variables, called cloud parameters.

    For post-instantiation, the goal is to configure the VNF with initial configuration.


    As part of SDC design time, when defining the topology, for the resource of type VF or PNF, you need to specify


    Prerequisite

    1. Gather the parameters:

      Have the HEAT template along with the HEAT environment file.

      or

      Have the Helm chart along with the Values.yaml file (Integration between Multcloud and CDS TBD)

      Have the configuration template to apply on the VNF.

      1. XML for NETCONF
      2. JSON / XML for RESTCONF
      3. JSON for Ansible
      4. CLI
      5. ...
    2. Identify which template parameters are static and dynamic
    3. Create and fill-in the a table for all the dynamic values

      While doing so, identify the resources using the same process to be resolved; for instance, if two IPs has to be resolved through the same IPAM, the process the resolve the IP is the same.

      Here are the information to capture for each dynamic cloud parameters

      Parameter Name Data Dictionary Resource source Data Dictionary Ingredients for resolution Output of resolution
      Either the cloud parameters name or the placeholder given for the dynamic property.

      Value will be given as input in the request.

      Value will be defaulted in the model.

      Value will be resolved by sending a query to the REST system


      Auth URL URI Payload VERB

      Supported Auth type

      Use token based authentication

      • token

      Use basic authentication

      • username
      • password

      Use SSL basic authentication

      • keystore type
      • truststore
      • truststore password
      • keystore
      • keystore password
      http(s)://<host>:<port> /xyz JSON formatted payload HTTP method



      Value will be resolved by sending a SQL statement to the DB system


      Type URL Query Username Password
      Only maria-db supported for now

      jdbc:mysql://<host>:<port>/db

      SQL statement



      Value will be resolved through the execution of a script.

      These are all the required parameters to process the resolution of that particular resources.

      List of placeholders used for

      • URI
      • Payload

      List of placeholders used for

      • SQL statement

      This is the expected result from the system, and you should know what value out of the response is of interest for you.

      If it's a JSON payload, then you should think about the json path to access to value of interest.

    Data dictionary

    What is a data dictionary?

    For each unique identified dynamic resource, along with all their ingredients, we need to create a data dictionary.

    Here are the modeling guideline: Modeling Concepts#resourceDefinition-modeling


    Bellow are examples of data dictionary

    Value will be pass as input.

    unit-number
    {
        "tags": "unit-number",
        "name": "unit-number",
        "property": {
          "description": "unit-number",
          "type": "string"
        },
        "updated-by": "adetalhouet",
        "sources": {
          "input": {
            "type": "source-input"
          }
        }
      }

    Value will be defaulted.

    prefix-id
    {
      "tags": "prefix-id",
      "name": "prefix-id",
      "property" :{
        "description": "prefix-id",
        "type": "integer"
      },
      "updated-by": "adetalhouet",
      "sources": {
        "default": {
          "type": "source-default"
        }
      }
    }

    Value will be resolved through REST.

    Modeling reference: Modeling Concepts#rest


    primary-config-data via rest source type

    In this example, we're making a POST request to an IPAM system with no payload.

    Some ingredients are required to perform the query, in this case, $prefixId. Hence It is provided as an input-key-mapping and defined as a key-dependencies. Please refer to the modeling guideline for more in depth understanding.

    As part of this request, the expected response will be as bellow. What is of interest is the address field, as this is what we're trying to resolve.

    response
    {
        "id": 4,
        "address": "192.168.10.2/32",
        "vrf": null,
        "tenant": null,
        "status": 1,
        "role": null,
        "interface": null,
        "description": "",
        "nat_inside": null,
        "created": "2018-08-30",
        "last_updated": "2018-08-30T14:59:05.277820Z"
    }

    To tell the resolution framework what is of interest in the response, the path property can be used, which uses JSON_PATH, to get the value.

    create_netbox_ip_address
    {
        "tags" : "oam-local-ipv4-address",
        "name" : "create_netbox_ip",
        "property" : {
          "description" : "netbox ip",
          "type" : "string"
        },
        "updated-by" : "adetalhouet",
        "sources" : {
          "primary-config-data" : {
            "type" : "source-rest",
            "properties" : {
              "type" : "JSON",
              "verb" : "POST",
              "endpoint-selector" : "ipam-1",
              "url-path" : "/api/ipam/prefixes/$prefixId/available-ips/",
              "path" : "/address",
              "input-key-mapping" : {
                "prefixId" : "prefix-id"
              },
              "output-key-mapping" : {
                "address" : "address"
              },
              "key-dependencies" : [ "prefix-id" ]
            }
          }
        }
      }

    Value will be resolved through a database.

    Modeling reference: Modeling Concepts#sql

    In this example, we're making a SQL to the primary database.

    Some ingredients are required to perform the query, in this case, $vfmoudleid. Hence It is provided as an input-key-mapping and defined as a key-dependencies. Please refer to the modeling guideline for more in depth understanding.

    As part of this request, the expected response will be as put in value. In the output-key-mapping section, that value will be mapped to the expected resource name to resolve.

    vf-module-type
    {
      "name": "vf-module-type",
      "tags": "vf-module-type",
      "property": {
        "description": "vf-module-type",
        "type": "string"
      },
      "updated-by": "adetalhouet",
      "sources": {
        "primary-db": {
          "type": "source-db",
          "properties": {
            "type": "SQL",
            "query": "select sdnctl.demo.value as value from sdnctl.demo where sdnctl.demo.id=:vfmoduleid",
            "input-key-mapping": {
              "vfmoduleid": "vf-module-number"
            },
            "output-key-mapping": {
              "vf-module-type": "value"
            },
            "key-dependencies": [
              "vf-module-number"
            ]
          }
        }
      }
    }

    Value will be resolved through the execution of a script.

    Modeling reference: Modeling Concepts#Capability

    In this example, we're making use of a Python script.

    Some ingredients are required to perform the query, in this case, $vf-module-type. Hence It is provided as a key-dependencies. Please refer to the modeling guideline for more in depth understanding.

    As part of this request, the expected response will set within the script itself.

    interface-description
    {
      "tags": "interface-description",
      "name": "interface-description",
      "property": {
        "description": "interface-description",
        "type": "string"
      },
      "updated-by": "adetalhouet",
      "sources": {
        "capability": {
          "type": "source-capability",
          "properties": {
            "script-type": "jython",
            "script-class-reference": "Scripts/python/DescriptionExample.py",       
            "key-dependencies": [
              "vf-module-type"
            ]
          }
        }
      }
    }

    The script itself is as bellow.

    The key is to have the script class derived from the framework standards.

    In the case of resource resolution, the class to derive from is AbstractRAProcessor

    It will give the required methods to implement: process and recover, along with some utility functions, such as set_resource_data_value or addError.

    These functions either come from the AbstractRAProcessor class, or from the class it derived from.

    If the resolution fail, the recover method will get called with the exception as parameter.

    Scripts/python/DescriptionExample.py
    #  Copyright (c) 2019 Bell Canada.
    #
    #  Licensed under the Apache License, Version 2.0 (the "License");
    #  you may not use this file except in compliance with the License.
    #  You may obtain a copy of the License at
    #
    #      http://www.apache.org/licenses/LICENSE-2.0
    #
    #  Unless required by applicable law or agreed to in writing, software
    #  distributed under the License is distributed on an "AS IS" BASIS,
    #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    #  See the License for the specific language governing permissions and
    #  limitations under the License.
    
    from abstract_ra_processor import AbstractRAProcessor
    from blueprint_constants import *
    from java.lang import Exception as JavaException
    
    class DescriptionExample(AbstractRAProcessor):
    
        def process(self, resource_assignment):
            try:
                # get key-dependencies value
                value = self.raRuntimeService.getStringFromResolutionStore("vf-module-type")
                
                # logic based on key-dependency outcome
                result = ""
                if value == "vfw":
                    result = "This is the Virtual Firewall entity"
                elif value == "vsn":
                    result = "This is the Virtual Sink entity"
                elif value == "vpg":
                    result = "This is the Virtual Packet Generator"
    
                # set the value of resource getting currently resolved
                self.set_resource_data_value(resource_assignment, result)
    
            except JavaException, err:
              log.error("Java Exception in the script {}", err)
            except Exception, err:
              log.error("Python Exception in the script {}", err)
            return None
    
        def recover(self, runtime_exception, resource_assignment):
            print self.addError(runtime_exception.getMessage())
            return None
    
    
    

    Value will be resolved through REST., and output will be a complex type.

    Modeling reference: Modeling Concepts#rest

    In this example, we're making a POST request to an IPAM system with no payload.

    Some ingredients are required to perform the query, in this case, $prefixId. Hence It is provided as an input-key-mapping and defined as a key-dependencies. Please refer to the modeling guideline for more in depth understanding.

    As part of this request, the expected response will be as bellow.

    response
    {
        "id": 4,
        "address": "192.168.10.2/32",
        "vrf": null,
        "tenant": null,
        "status": 1,
        "role": null,
        "interface": null,
        "description": "",
        "nat_inside": null,
        "created": "2018-08-30",
        "last_updated": "2018-08-30T14:59:05.277820Z"
    }

    What is of interest is the address and id fields. For the process to return these two values, we need to create a custom data-type, as bellow

    dt-netbox-ip
    {
      "version": "1.0.0",
      "description": "This is Netbox IP Data Type",
      "properties": {
        "address": {
          "required": true,
          "type": "string"
        },
        "id": {
          "required": true,
          "type": "integer"
        }
      },
      "derived_from": "tosca.datatypes.Root"
    }

    The type of the data dictionary will be dt-netbox-ip.

    To tell the resolution framework what is of interest in the response, the output-key-mapping section is used. The process will map the output-key-mapping to the defined data-type.

    create_netbox_ip_address
    {
        "tags" : "oam-local-ipv4-address",
        "name" : "create_netbox_ip",
        "property" : {
          "description" : "netbox ip",
          "type" : "dt-netbox-ip"
        },
        "updated-by" : "adetalhouet",
        "sources" : {
          "primary-config-data" : {
            "type" : "source-rest",
            "properties" : {
              "type" : "JSON",
              "verb" : "POST",
              "endpoint-selector" : "ipam-1",
              "url-path" : "/api/ipam/prefixes/$prefixId/available-ips/",
              "path" : "",
              "input-key-mapping" : {
                "prefixId" : "prefix-id"
              },
              "output-key-mapping" : {
    			"address" : "address",
                "id" : "id"
              },
              "key-dependencies" : [ "prefix-id" ]
            }
          }
        }
      }

    CBA scaffholding

    The overall purpose of the document is the constituate a CBA, see Modeling Concepts#ControllerBlueprintArchive for understanding of what a CBA is.

    Now is the time to create the scaffholfing for your CBA.

    What you will need is the following based directory/file structure:

    ├── Definitions
    │   └── blueprint.json                          Overall TOSCA service template (worfklow + node_template)
    ├── Environments                                Contains *.properties files as required by the service
    ├── Plans                                       Contains Directed Graph
    ├── Scripts                                     Contains scripts
    │   ├── python                                  Python scripts
    │   └── kotlin                                  Kotlin scripts
    ├── TOSCA-Metadata
    │   └── TOSCA.meta                              Meta-data of overall package
    └── Templates                                   Contains combination of mapping and template

    The TOSCA.meta should have this information

    TOSCA-Meta-File-Version: 1.0.0
    CSAR-Version: 1.0
    Created-By: Alexis de Talhouët (adetalhouet89@gmail.com)
    Entry-Definitions: Definitions/blueprint.json					<- Path reference to the blueprint.json file. If the file name is changed, change here accordinlgy.
    Template-Tags: ONAP, CBA, Test
    Content-Type: application/vnd.oasis.bpmn

    The blueprint.json should have the following metadata

    {
      "metadata": {
        "template_author": "Alexis de Talhouët",
        "author-email": "adetalhouet89@gmail.com",
        "user-groups": "ADMIN, OPERATION",
        "template_name": "golden",									<- This is the overall CBA name, will be refer later to sdnc_blueprint_name
        "template_version": "1.0.0",								<- This is the overall CBA version, will be refer later to sdnc_blueprint_version
        "template_tags": "ONAP, CBA, Test"
      }
    . . .

    Workflows

    The following workflows are contracts established between SO, SDNC and CDS to cover the instantiation and the post-instantiation use cases.

    Please refer to the modeling guide to understand workflow concept: Modeling Concepts#workflow

    The workflow definition will be added within the blueprint.json file, see CBA scaffholding.


    resource-assignment

    This action is meant to assign resources needed to instantiate the service, e.g. to resolve all the cloud parameters.

    Also, this action has the ability to perform a dry-run, meaning that result from the resolution will be made visible to the user.


    Context

    This action is triggered by Generic-Resource-API (GR-API) within SDNC as part of the AssignBB orchestrated by SO.

    It will be triggered for each VNF(s) and VF-Module(s) (referred as entity bellow).

    See SO Building blocks Assignment.

    Templates

    Understand resource accumulator templates

    These templates are specific to the instantiation scenario, and relies on GR-API within SDNC.

    The resource accumulator template is composed of the following sections:

    resource-accumulator-resolved-data

    Defines all the resources that can be resolved directly from the context. It expresses a direct mapping between the name of the resource and its value.

    RA resolved data
      "resource-accumulator-resolved-data": [
        {
          "param-name": "service-instance-id",
          "param-value": "${service-instance-id}"
        },
        {
          "param-name": "vnf_id",
          "param-value": "${vnf-id}"
        }
      ]
    capability-data

    Defines the logic to use to create a specific resource, along with the ingredients required to invoke the capability and the output mapping. See the ingredients as function parameters, and output mapping as returned value.

    The logic to resolve the resource is a DG, hence DG development is required to support a new capability.

    Currently the following capabilities exist:

    • Netbox: netbox-ip-assign

      Example
          {
            "capability-name": "netbox-ip-assign",
            "key-mapping": [
              {
                "payload": [
                  {
                    "param-name": "service-instance-id",
                    "param-value": "${service-instance-id}"
                  },
                  {
                    "param-name": "prefix-id",
                    "param-value": "${private-prefix-id}"
                  },
                  {
                    "param-name": "vf-module-id",
                    "param-value": "${vf-module-id}"
                  },
                  {
                    "param-name": "external_key",
                    "param-value": "${vf-module-id}-vpg_private_ip_1"
                  }
                ],
                "output-key-mapping": [
                  {
                    "resource-name": "vpg_private_ip_1",
                    "resource-value": "${vpg_private_ip_1}"
                  }
                ]
              }
            ]
          }
    • Name generation: generate-name

      Example
          {
            "capability-name": "generate-name",
            "key-mapping": [
              {
                "payload": [
                  {
                    "param-name": "resource-name",
                    "param-value": "vnf_name"
                  },
                  {
                    "param-name": "resource-value",
                    "param-value": "${vnf_name}"
                  },
                  {
                    "param-name": "external-key",
                    "param-value": "${vnf-id}_vnf_name"
                  },
                  {
                    "param-name": "policy-instance-name",
                    "param-value": "${vf-naming-policy}"
                  },
                  {
                    "param-name": "nf-role",
                    "param-value": "${nf-role}"
                  },
                  {
                    "param-name": "naming-type",
                    "param-value": "VNF"
                  },
                  {
                    "param-name": "AIC_CLOUD_REGION",
                    "param-value": "${aic-cloud-region}"
                  }
                ],
                "output-key-mapping": [
                  {
                    "resource-name": "vnf_name",
                    "resource-value": "${vnf_name}"
                  }
                ]
              }
            ]
          }

    Required templates

    See Modeling Concepts#template

    The name of the templates is very important, and can't be random. Bellow are the requirements

    VNF

    The VNF Resource Accumulator Template prefix name can be anything, but what is very important is that when integrating with SDC the sdnc_artifact_name property of the VF or PNF needs to be the same; see here.

    VF-Modules

    Each vf-module will have its own resource accumulator template, and its prefix name must be the vf-module-label, which is nothing but the name of the HEAT file defining the OS::Nova::Server

    Example:

    If the file is name vfw.yaml, the vf-module-label will be vfw

    For instance, with the vFW service HEAT definition, you will see in the VSP within SDC the following screen, showing you the label of each vf-module

    In this case, we will have 4 resource accumulator templates, following the template convention, hence ending with -template

    • base_template-template.vtl
    • vfw-template.vtl
    • vsn-template.vtl
    • vpg-template.vtl


    Mapping

    Each template requires its associated mapping file, see Modeling Concepts#ArtifactMappingResource

    Example:

    Taking the same vFW example, we would have 4 mapping template following the convention, hence ending with -mapping:

    • base_template-mapping.vtl
    • vfw-mapping.vtl
    • vsn-mapping.vtl
    • vpg-mapping.vtl

    Required Inputs

    Property Description Definition
    template-prefix

    SDNC will populate this input with the name of the template to execute.

    If doing VNF Assign, it will use sdnc_artifact_name as template-prefix.

    If doing VF-Module Assign, it will use the vf-module-label as template-prefix.

    "template-prefix" : {
       "required" : true,
       "type" : "list",
       "entry_schema" : {
          "type" : "string"
       }

    Output

    It is necessary to provide the resolved template as output. To do so, we will use the Modeling Concepts#getAttribute expression.

    Also, as mentioned here Modeling Concepts#resourceResolution, the resource resolution component node will populate an attribute named assignment-params with the result.

    Finally, the name of the ouput has to be meshed-template so SDNC GR-API knows how to properly parse the response.

    Component

    This action requires a node_template of type component-resource-resolution

    The name of the node_template is important, as it will be used within the Workflow definition (see step.target property Modeling Concepts#workflowProperties)

    Finally, you can see the component has a list of artifacts, being the template/mapping defined before.

    Example:

    Taking the same vFW example, we have a node_template name resource-assignment:

    Example
        "node_templates": {
          "resource-assignment" : {
            "type" : "component-resource-resolution",
            "interfaces" : {
              "ResourceResolutionComponent" : {
                "operations" : {
                  "process" : {
                    "inputs" : {
                      "artifact-prefix-names" : {
                        "get_input" : "template-prefix"
                      }
                    }
                  }
                }
              }
            },
            "artifacts": {
              "base-template": {
                "type": "artifact-template-velocity",
                "file": "Templates/base-template.vtl"
              },
              "base-mapping": {
                "type": "artifact-mapping-resource",
                "file": "Templates/base-mapping.json"
              },
              "vfw-template": {
                "type": "artifact-template-velocity",
                "file": "Templates/vfw-template.vtl"
              },
              "vfw-mapping": {
                "type": "artifact-mapping-resource",
                "file": "Templates/vfw-mapping.json"
              },
              "vfw-vnf-template": {
                "type": "artifact-template-velocity",
                "file": "Templates/vfw-vnf-template.vtl"
              },
              "vfw-vnf-mapping": {
                "type": "artifact-mapping-resource",
                "file": "Templates/vfw-vnf-mapping.json"
              },
              "vpg-template": {
                "type": "artifact-template-velocity",
                "file": "Templates/vpg-template.vtl"
              },
              "vpg-mapping": {
                "type": "artifact-mapping-resource",
                "file": "Templates/vpg-mapping.json"
              },
              "vsn-template": {
                "type": "artifact-template-velocity",
                "file": "Templates/vsn-template.vtl"
              },
              "vsn-mapping": {
                "type": "artifact-mapping-resource",
                "file": "Templates/vsn-mapping.json"
              }
            }
          }
        }
      }

    Overall workflow example w/ component and artifact

    resource-assignment
    {
      "metadata": {
        "template_author": "Alexis de Talhouët",
        "author-email": "adetalhouet89@gmail.com",
        "user-groups": "ADMIN, OPERATION",
        "template_name": "vFW_spinup",
        "template_version": "1.0.0",
        "template_tags": "vFW"
      },
      "topology_template": {
        "workflows": {
          "resource-assignment": {
            "steps": {
              "resource-assignment": {
                "description": "Resource Assign Workflow",
                "target": "resource-assignment"
              }
            },
            "inputs" : {
              "template-prefix" : {
                "required" : true,
                "type" : "list",
                "entry_schema" : {
                  "type" : "string"
                }
              }
            },
            "outputs": {
              "meshed-template": {
                "type": "json",
                "value": {
                  "get_attribute": [
                    "resource-assignment",
                    "assignment-params"
                  ]
                }
              }
            }
          }
        },
        "node_templates": {
          "resource-assignment" : {
            "type" : "component-resource-resolution",
            "interfaces" : {
              "ResourceResolutionComponent" : {
                "operations" : {
                  "process" : {
                    "inputs" : {
                      "artifact-prefix-names" : {
                        "get_input" : "template-prefix"
                      }
                    }
                  }
                }
              }
            },
            "artifacts": {
              "base-template": {
                "type": "artifact-template-velocity",
                "file": "Templates/base-template.vtl"
              },
              "base-mapping": {
                "type": "artifact-mapping-resource",
                "file": "Templates/base-mapping.json"
              },
              "vfw-template": {
                "type": "artifact-template-velocity",
                "file": "Templates/vfw-template.vtl"
              },
              "vfw-mapping": {
                "type": "artifact-mapping-resource",
                "file": "Templates/vfw-mapping.json"
              },
              "vfw-vnf-template": {
                "type": "artifact-template-velocity",
                "file": "Templates/vfw-vnf-template.vtl"
              },
              "vfw-vnf-mapping": {
                "type": "artifact-mapping-resource",
                "file": "Templates/vfw-vnf-mapping.json"
              },
              "vpg-template": {
                "type": "artifact-template-velocity",
                "file": "Templates/vpg-template.vtl"
              },
              "vpg-mapping": {
                "type": "artifact-mapping-resource",
                "file": "Templates/vpg-mapping.json"
              },
              "vsn-template": {
                "type": "artifact-template-velocity",
                "file": "Templates/vsn-template.vtl"
              },
              "vsn-mapping": {
                "type": "artifact-mapping-resource",
                "file": "Templates/vsn-mapping.json"
              }
            }
          }
        }
      }
    }

    Add a new capability

    When adding a capability, consider whether it should be available both at VNF and VF-Module level. This is important for its implementation.

    Here is the

    You need to do the following:

    1. Create the DG that will handle the logic to resolve the resource
    2. Load the DG within SDNC

      Example of script to automate deployment of DG
      #!/bin/sh
      
      # This script takes care of loading the DG into the runtime of SDNC.
      # The DG file name has to follow this pattern:
      # GENERIC-RESOURCE-API_{rpc_name}_{version}
      
      usage() {
        echo "./load-dg.sh <dg>"
        exit
      }
      
      if [[ -z $1 ]]
      then
          usage
      fi
      
      rpc_name=`echo "$1" | cut -d'_' -f2 | cut -d'.' -f1`
      version=`echo "$1" | cut -d'_' -f3`
      content=`cat $1`
      ip=$2
      
      data="$(curl -s -o /dev/null -w %{url_effective} --get --data-urlencode "$content" "")"
      dg_xml_escaped="${data##/?}"
      
      echo -e "module=GENERIC-RESOURCE-API&rpc=$rpc_name&flowXml=$dg_xml_escaped" > payload
      
      echo -e "    Installing $rpc_name version ${version%.*}"
      curl -X  POST \
        http://$ip:$SDNC_NODE_PORT/uploadxml \
        -H 'Authorization: Basic ZGd1c2VyOnRlc3QxMjM=' \
        -H 'Content-Type: application/x-www-form-urlencoded' \
        -d @payload
      
      rm payload
      
      echo -e "    Activating $rpc_name version ${version%.*}"
      activate_uri="activateDG?module=GENERIC-RESOURCE-API&rpc=$rpc_name&mode=sync&version=${version%.*}&displayOnlyCurrent=true"
      curl -X GET \
        -H 'Accept: application/json' \
        -H 'Authorization: Basic ZGd1c2VyOnRlc3QxMjM=' \
        -H 'Content-Type: application/json' \
        http://$ip:$SDNC_NODE_PORT/$activate_uri
      
      
    3. Add the capability in the self-serve-vnf-assign DG and/or self-serve-vf-module-assign in the node named set ss.capability.execution-order[] then upload the updated version of this DG.
      When doing so, make sure to increment the last parameter ss.capability.execution-order_length

    Understand overall SDNC DG flow logic

    Logic for vnf and vf-module assignement is pretty much the same.

    This is the general DG logic of the VNF assign flow and sub-flows:

    1. call vnf-topology-operation
      1. call vnf-topology-operation-assign
        1. call self-serve-vnf-assign
          1. set capability.execution-order
          2. call self-serve-vnf-ra-assignment
            1. execute REST call to CDS blueprint processor
            2. put resource-accumulator-resolved-data in MDSAL GR-API/services/service/$serviceInstanceId/vnfs/vnf/$vnfId
          3. call self-serve- + capability-name
          4. put vnf information in AAI (including the selflink)
        2. call naming-policy-generate-name
        3. put generic-vnf relationship in AAI

    This is the general logic of the vf-module assign flow and sub-flows:

    1. call vf-module-topology-operation
      1. call vf-module-topology-operation-assign
        1. set service-data based on SO request (userParams / cloudParams)
        2. call self-serve-vf-module-assign
          1. set capability.execution-order
          2. call self-serve-vfmodule-ra-assignment
            1. execute REST call to CDS blueprint processor
              1. put resource-accumulator-resolved-data in MDSAL GR-API/services/service/$serviceInstanceId/vnfs/vnf/$vnfId/vf-modules/vf-module
          3. call self-serve- + capability-name
        3. put vf-module information in AAI
        4. put vnfc information in AAI

    config-assign

    This action is meant to assign all the resources and mesh the templates needed for the configuration to apply during post-instantiation (day0 config).

    If user is fine with the result, he can proceed, else, (TDB) he will have opportunity to re-trigger the resolution.

    Context

    This action is triggered by SO after the AssignBB has been executed for Service, VNF and VF-Module. It corresponds to the ConfigAssignBB.

    See SO Building blocks Assignment.

    Steps

    This is a single action type of workflow, hence the target will refer to a node_template of type component-resource-resolution

    Inputs

    Property Description
    resolution-key

    The dry-run functionality requires the ability to retrieve the resolution that has been made later point in time in the process.

    The combination of the artifact-name and the resolution-key will be used to uniquely identify the result.

    Output

    In order to perform dry-run, it is necessary to provide the meshed resolved template as output. To do so, the use of Modeling Concepts#getAttribute expression is required.

    Also, as mentioned here Modeling Concepts#resourceResolution, the resource resolution component node will populate an attribute named assignment-params with the result.

    Example

    Here is an example of the config-assign workflow:

    config-assign
    {
      "workflows": {
        "config-assign": {
          "steps": {
            "config-assign-process": {
              "description": "Config Assign Workflow",
              "target": "config-assign-process"
            }
          },
          "inputs": {
            "resolution-key": {
              "required": true,
              "type": "string"
            },
            "config-assign-properties": {
              "description": "Dynamic PropertyDefinition for workflow(config-assign).",
              "required": true,
              "type": "dt-config-assign-properties"
            }
          },
          "outputs": {
            "dry-run": {
              "type": "json",
              "value": {
                "get_attribute": [
                  "SELF",
                  "assignment-params"
                ]
              }
            }
          }
        }
      }
    }

    config-deploy

    This action is meant to push the configuration templates defined during the config-assign step for the post-instantiation.

    This action is triggered by SO during after the CreateBB has been executed for all the VF-Modules.

    Context

    This action is triggered by SO after the CreateVnfBB has been executed. It corresponds to the ConfigDeployBB.

    See SO Building blocks Assignment.

    Steps

    This is a single action type of workflow, hence the target will refer to a node_template of type component-netconf-executor or component-jython-executor or component-restconf-executor.

    Inputs

    Property Description
    resolution-key

    Needed to retrieve the resolution that has been made earlier point in time in the process.

    The combination of the artifact-name and the resolution-key will be used to uniquely identify the result.

    Output

    SUCCESS or FAILURE

    Example

    Here is an example of the config-deploy workflow:

    config-deploy
    {
      "workflow": {
        "config-deploy": {
          "steps": {
            "config-deploy": {
              "description": "Config Deploy using Python (Netconf) script",
              "target": "config-deploy-process"
            }
          },
          "inputs": {
            "resolution-key": {
              "required": true,
              "type": "string"
            },
            "config-deploy-properties": {
              "description": "Dynamic PropertyDefinition for workflow(config-deploy).",
              "required": true,
              "type": "dt-config-deploy-properties"
            }
          }
        }
      }
    }

    resource-assignment-process

    config-assign-process

    config-deploy-process



    Introduction

    The purpose is to describe integration of CDS within SDC

    What's new

    At the VF and PNF level, a new artifact type CONTROLLER_BLUEPRINT_ARCHIVE allow the designed to load the previsouly designed CBA as part of the resource.

    How to add the CBA in SDC VF resource (similar for PNF)

    Create the VF resource

    Click on Deployment Artifact, then Add other arifacts, and select you CBA


    Check the artifact is uploaded OK, and click on Certify.

    Create a new service model, and add the newly created VF (including CBA artifact) to the new service model. Click on "Add Service"

    Click on "Composition", and drag the VF we created from the palette on the left onto the canvas in the middle.

    Then, click on "Submit for Testing".

    Click on Properties Assignments, then click on the service name, e.g. "CDS-VNF-TEST" from the right bar.

    Type "sdnc" in the filter box, and add the sdnc_model_name, sdnc_model_version, and sdnc_artifact_version, and click "Save".

    • sdnc_model_name - This is the name of the blueprint (e.g. CBA name)
    • sdnc_model_version - This is the version of the blueprint
    • sdnc_artifact_name - This is the name of the VNF resource accumulator template

    Type "skip" in the filter box, and set "skip post instantiation" to FALSE, then click "Save".

    Login as Tester (jm0007/demo123456!) and accept the new service.

    Login as Governor (gv0001/demo123456!) and approve for distribution.

    Login as Operator (op0001/demo123456!) and click on "Distribute".

    Click on "Monitor" to check the progress of the distribution, and check that all ONAP components were notified, and downloaded the artifacts, and deployed OK.

    Starting from Dublin release, CDS offers a new package configuration to design the services provisioning. This section describes step by step the procedure of designing a new CBA from scratch.

    The CBA package content is well described in CDS Modeling Concepts and also in Design Time section, it shows the structure of a CBA and the different definitions/artifacts. This section will be more focus on the creation of new CBA (The structure: required folder and files), and the enrichment procedure to generate the complete config file.

    CBA directory and structure


    CBA directory structure
    ├── CBA-archive-name                             # CBA Root Directory        
    |   └── Definitions/        
    │       └── CBA_configuration_file.json          # CBA configuration file (Mandatory)               
    |   └── Environments/                            # All environment files contained in this folder are loaded in Blueprint processor run-time       
    │       └── env-prod.properties                                             
    │       └── env-test.properties        
    |   └── Plans/        
    │       └── CONFIG_DirectedGraphExample.xml      # Directed graph artifact        
    |   └── Scripts/                                 # Script used for capability resource resolution
    │       └── kotlin/          
    │           └── script_kotlin.kt
    │       └── ansible/          
    │           └── ansible_file.yaml
    │       └── python/          
    │           └── SamplePython.py                     
    |   └── TOSCA-Metadata/        
    │       └── TOSCA.meta                           # CBA entry point (Mandatory)                
    |   └── Templates/        
    │       └── example1-template.jinja              # Template file that will dynamic represent a payload in some execution node (Extensions supported: .vtl and .jinja)    
    │       └── example1-mapping.json                # List of variables that will be resolved to fulfill the jinja template
    │       └── example2-template.vtl                # Velocity Template file 
    │       └── example2-mapping.json                # Mapping file for velocity template
    

                                                                                                                                             Fig. CBA config file structure

       

     A. CBA configuration file sections description

    The above diagram shows a simple CBA with one workflow and one node template. The following describes each section defined in CBA config file.

    • CBA Metadata:

    This section specify information about the CBA such as:

       - The Author: Name and email

       - User privileges for this self-service provisioning execution

       - CBA identifier: Template name and Version (Ex. Template name: My-self-service-name, Version: 1.0.0)

       - Template tags: Reference words that can be used to find this CBA.


    • DSL Definition:

    We define here all parameters, in JSON, needed in service provisioning.

    Ex. Endpoint selector to provide remote Ansible server parameters.

    ansible-remote-endpoint
    "ansible-remote-endpoint" : {
       "type" : "token-auth",
       "url" : "http://ANSIBLE_IP_ADDRESS",
       "token" : "Bearer J9gEtMDqf7P4YsJ74fioY9VAhLDIs1"
    }


    • Workflows execution:

                  - my-workflow1: This is a workflow to describe the action that will trigger the self-service provisioning in run-time. A workflow can take input and return output. It can also follow one or many steps. In this example, only one step is defined.

    Workflow: my-workflow1
    "my-workflow1" : {
       "steps" : {
          "execute-script" : {
             "description" : "some description",
             "target" : "my-workflow-target-node-node-template",
             "activities" : [ {
                "call_operation" : ""
             } ]
          }
       },
       "inputs" : {
          "my-input" : {
             "required" : false,
             "type" : "string"
          }
       }
    }

    Each step points to a target which is the corresponding node template, and the target specified here is: my-workflow-target-node-node-template.


    • Node templates: This section provide the self-service execution plan, usually DG is used here to describe complex workflow. But, the above CBA contains a simple node template (my-workflow-node-node-template) without DG:
    my-workflow-target-node-node-template
    "my-workflow-target-node-node-template" : {
       "type" : "node-template-execution-type",
       "interfaces" : {
          "NodeTemplateInterface" : {
             "operations" : {
                "process" : {
                   "implementation" : {
                      "primary" : "component-script"
                   },
                   "inputs" : {
                      "command" : "python SamplePython.py",
                      "packages" : [ {
                         "type" : "pip",
                         "package" : [ "pyaml" ]
                      } ],
                      "argument-properties" : "*remote-argument-properties",
                      "dynamic-properties" : "*remote-argument-properties"
                   }
                }
             }
          }
       },
       "artifacts" : {
          "component-script" : {
             "type" : "artifact-script-python",
             "file" : "Scripts/python/SamplePython.py"
          }
       }
    }


    The node template is defined by the node-template-execution-type. This type specifies the component function to use for this node template execution. The following shows the different components that can be executed as a node template:

    Node template types
    ├── component-resource-resolution                             # CBA Root Directory        
    |   └── Interface:        
    │       ├── ResourceResolutionComponent                       # Component to resolve resources               
    │           └── Resolution approaches:                        
    │       	    ├── rr-processor-source-capability             # Resolve using Capability scripts such as jython or kotlin
    │       		├── rr-processor-source-processor-db           # Resolve using database query
    │       		├── rr-processor-source-default                # resolve by getting default value provided
    │       		├── rr-processor-source-rest                   # Resolve using REST API request
    ├── component-jython-executor                                 # Component to execute Jython scripts
    |   └── Interface:        
    │       ├── ComponentJythonExecutor
    ├── component-remote-python-executor                          # Component to execute remote python scripts
    |   └── Interface:        
    │       ├── ComponentRemotePythonExecutor
    ├── component-restconf-executor                               # Component to execute Restconf operations 
    |   └── Interface:        
    │       ├── ComponentRestconfExecutor
    ├── component-netconf-executor                                # Component to execute netconf operations
    |   └── Interface:        
    │       ├── ComponentNetconfExecutor
    ├── component-cli-executor                                    # Cli component
    |   └── Interface:        
    │       ├── ComponentCliExecutor
    ├── component-remote-ansible-executor                         # Component to execute remote ansible playbook
    |   └── Interface:        
    │       ├── ComponentRemoteAnsibleExecutor
    


         In the case the workflow point to a DG node template, this DG will describe all the execution sequence to run for the corresponding workflow steps. In the following, the workflow point to a DG and execute two node templates:

    • Workflow with DG
    Workflow: my-workflow2
    "my-workflow2" : {
       "steps" : {
          "execute-script" : {
             "description" : "some description here...",
             "target" : "my-workflow-target-node-template-with-DG",
             "activities" : [ {
                "call_operation" : ""
             } ]
          }
       },
       "inputs" : {
          "my-input" : {
             "required" : false,
             "type" : "string"
          }
       }
    }
    • Node templates with DG
    my-workflow-target-node-template-with-DG
    "my-workflow-target-node-template-with-DG" : {
       "type" : "dg-generic",
       "properties" : {
          "content" : {
             "get_artifact" : [ "SELF", "dg-my-workflow1-target-node-template-with-DG" ]
          },
          "dependency-node-templates" : [ "target-node-template1", "target-node-template2" ]
       },   
       "artifacts" : {
           "dg-my-workflow1-target-node-template-with-DG" : {
              "type" : "artifact-directed-graph",
              "file" : "Plans/CONFIG_DirectedGraphExample.xml"
           }
       }
    }


    in the below DG, we define the following sequence: [target-node-template1] [target-node-template2]

    CONFIG_DirectedGraphExample.xml
    <service-logic
      xmlns='http://www.onap.org/sdnc/svclogic'
      xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
      xsi:schemaLocation='http://www.onap.org/sdnc/svclogic ./svclogic.xsd' module='CONFIG' version='1.0.0'>
        <method rpc='dg-operation' mode='sync'>
            <block atomic="true">
                <execute plugin="target-node-template1" method="process">
                    <outcome value='failure'>
                        <return status="failure">
                        </return>
                    </outcome>
                    <outcome value='success'>
                        <execute plugin="target-node-template2" method="process">
                            <outcome value='failure'>
                                <return status="failure">
                                </return>
                            </outcome>
                            <outcome value='success'>
                                <return status='success'>
                                </return>
                            </outcome>
                        </execute>
                    </outcome>
                </execute>
            </block>
        </method>
    </service-logic>


     B. Other artifacts in CBA

    This section describes the different parts of the CBA, artifacts needed to have a model-driven package for self-service provisioning:

    • CBA Entry point: TOSCA.meta file
    TOSCA.meta
    TOSCA-Meta-File-Version: 1.0.0
    CSAR-Version: 1.0
    Created-By: Steve Siani <alphonse.steve.siani.djissitchi@ibm.com>
    Entry-Definitions: Definitions/CBA_configuration_file_name.json
    Template-Name: baseconfiguration
    Template-version: 1.0.0
    Template-Tags: Steve Siani, remote_ansible
    • Environment files: Some parameters need to be resolved to fulfill the template. It is possible to provide in your CBA, additional variables in environment files. In this approach, the service will get some parameters from environment file. The designer could define many environments variables in files, and those environments files are loaded automatically in the running self-service:

                     Constraint: Save environment files in [CBA Root Folder]/Environments/

    Environment files in CBA
    ├── CBA-archive-name                             # CBA Root Directory        
    |   .
    |   .
    |   .               
    |   └── Environments/                            # All environment files contained in this folder are loaded in Blueprint processor run-time       
    │       └── env-prod.properties                                             
    │       └── env-test.properties   
    │       └── AdditionalApplications.properties      
    |   .
    |   .
    |   . 
    
    env-prod.properties
    env-prod.ansible_ssh_user=<username>
    env-prod.ansible_ssh_pass=<password>
    env-prod.evi_id=<id>
    env-prod.service_db_url=<service_db_url>
    env-prod.topology_url=<topology_url>
    env-prod.resource_allocator_url=<resource_allocator>
    ...
    env-test.properties
    env-test.ansible_ssh_user=<username>
    env-test.ansible_ssh_pass=<password>
    env-test.evi_id=<id>
    env-test.service_db_url=<service_db_url>
    env-test.topology_url=<topology_url>
    env-test.resource_allocator_url=<resource_allocator>
    ...

    Note:  When environment files are provided in CBA under Environments directory, the variables contained in those files are load in Blueprint run-time context as a node template "BPP". So, accessing those variables will be possible by calling the function getNodeTemplateAttributeValue("BPP", attribute) in Blueprint Runtime Service. Where "attribute" refers to the environment variable defined in environment file.

    Ex. Getting environment variables from run time
    val username = blueprintRuntimeService.getNodeTemplateAttributeValue("BPP", "env-test.ansible_ssh_user").asText()


    • Template artifacts: Content the template file and the corresponding template mapping. This template provides a dynamic content to the self-service for configuration appliance.

    Ex. Jinja template sample

    example-template.jinja
    site_id: {{ site_id }}
    tenant_name: {{ tenant_name }}
    Interfaces:
    {%- for interface in interfaces %}
        interface {{ interface.name }}
        description {{ interface.description }}
        ipv4 address {{ interface.ipv4 }}
        mtu {{ interface.mtu }}
    {%- endfor %}

    Ex. Velocity template sample

    example-template.vtl
    site_id: ${site_id}
    tenant_name: ${tenant_name}
    Interfaces:
    #foreach( $interface in $interfaces )
        interface $interface.name
        description $interface.description
        ipv4 address $interface.ipv4
        mtu $interface.mtu
    #end

    Ex. Corresponding template mapping file sample

    example-mapping.json
    [
    	{
    		"name": "environment",
    		"input-param": true,
    		"property": {
    			"type": "string"
    		},
    		"dictionary-name": "input-source",
    		"dictionary-source": "input",
    		"dependencies": []
    	},
    	{
    		"name": "site_id",
    		"input-param": true,
    		"property": {
    			"type": "string"
    		},
    		"dictionary-name": "input-source",
    		"dictionary-source": "input",
    		"dependencies": []
    	},
    	{
    		"name": "tenant_name",
    		"input-param": true,
    		"property": {
    		  "type": "string"
    		},
    		"dictionary-name": "input-source",
    		"dictionary-source": "input",
    		"dependencies": []
    	},
        {
    		"name": "interfaces",
    		"input-param": true,
    		"property": {
    		   "type": "list",
    		   "entry_schema": {
    		      "type": "string"
    		   }
    		},
    		"dictionary-name": "properties-capability-source",
    		"dictionary-source": "capability",
    		"dependencies": ["environment"]
    	}
    ]

    In this template, some parameters are resolved using the input source and some are resolved using properties-capability-source.


    • Script artifacts: You may need to resolve resources using a customized script (Kotlin or Python) or execute remote python script on a device. In this case, you will define scripts in your CBA under the Scripts directory.

                       - Resource resolution using python script 

    In the CBA, you may need to define and resolve variables. This is possible by declaring these variables as a data types and each data type belongs to a resource dictionary. Let's take the example of the variable declare above in template mapping.

    Variable: interfaces
        {
    		"name": "interfaces",
    		"input-param": true,
    		"property": {
    		   "type": "list",
    		   "entry_schema": {
    		      "type": "string"
    		   }
    		},
    		"dictionary-name": "properties-capability-source",
    		"dictionary-source": "capability",
    		"dependencies": ["environment"]
    	}

    This variable is declared as an array list resolved using a resource dictionary name "properties-capability-source", from the dictionary source "capability" and will depend on variable call "environment". Dependency variable means that the "environment" variable should be resolved before "interfaces" variable is resolved.

    The resource dictionary "properties-capability-source" must be load in CDS run time and will point to the python script to execute as Jython in order to resolve "interfaces" variable.

    Resource dictionary: properties-capability-source
        {
           "name": "properties-capability-source",
           "updated-by": "Steve Alphonse Siani, alphonse.steve.siani.djissitchi@ibm.com",
           "tags": "properties-capability-source",
           "property" :{
               "description": "Data dictionary used to read properties.",
               "type": "string"
           },
           "sources": {
               "input": {
                  "type": "source-input"
                },
               "default": {
                  "type": "source-default",
                  "properties": {}
               },
               "capability": {
                  "type": "source-capability",
                  "properties" : {
                     "script-type" : "jython",
                     "script-class-reference" : "Scripts/python/ResolvProperties.py"
                  }
               }
           }
        }
    Scripts/python/ResolvProperties.py
    from abstract_ra_processor import AbstractRAProcessor
    from blueprint_constants import *
    
    class ResolvProperties(AbstractRAProcessor):
    
        def process(self, resource_assignment):
            result = ""
            env = ""
            attribute = ""
            # get dependencies result
            value = self.raRuntimeService.getStringFromResolutionStore("environment")
            
            #logic based on dependency outcome
            env = "env-" + value
    
            if resource_assignment.name == "ansible_ssh_user":
                attribute = env + ".ansible_ssh_user"
            if resource_assignment.name == "ansible_ssh_pass":
                attribute = env + ".ansible_ssh_pass"
            if resource_assignment.name == "evi_id":
                attribute = env + ".evi_id"
            if resource_assignment.name == "service_db_url":
                attribute = env + ".service_db_url"
            if resource_assignment.name == "topology_url":
                attribute = env + ".topology_url"
            if resource_assignment.name == "resource_allocator_url":
                attribute = env + ".resource_allocator_url"
    
            result = self.raRuntimeService.getNodeTemplateAttributeValue("BPP", attribute).asText()
    
            # set value for resource getting currently resolved
            self.set_resource_data_value(resource_assignment, result)
            return None
    
        def recover(self, runtime_exception, resource_assignment):
            log.error("Exception in the script {}", runtime_exception)
            print self.addError(runtime_exception.cause.message)
            return None

           

                       - Component execution on Netconf device with python script 

    In the following, we define a node template execution as a "component-netconf-executor" and in the input we specify the script to run into the Netconf device.

    Component Netconf executor
    "node_templates": {
        "config-deploy": {
            "type": "component-netconf-executor",
            "requirements": {
              "netconf-connection": {
                "capability": "netconf",
                "node": "netconf-device",
                "relationship": "tosca.relationships.ConnectsTo"
              }
            },
            "interfaces": {
              "ComponentScriptExecutor": {
                "operations": {
                  "process": {
                    "inputs": {
                      "script-type": "jython",
                      "script-class-reference": "Scripts/python/ConfigDeploy.py",                 
                      "dynamic-properties": "*config-deploy-properties"
                    }
                  }
                }
              }
            }
         },
         "netconf-device": {
            "type": "vnf-netconf-device",
            "capabilities": {
              "netconf": {
                "properties": {
                  "login-key": {
                    "get_input": "password"
                  },
                  "login-account": {
                    "get_input": "username"
                  },
                  "target-ip-address": {
                    "get_input": "ip"
                  },
                  "port-number": 830,
                  "connection-time-out": 5
                }
              }
            }
         }
    }


     C. Enrich the CBA to have complete package

    Once CBA design is done, you need to perform the enrichment action to have a fully model-driven package to execute self-service provisioning in run-time execution. Please refer to this section "Enriching (or enhancing) a blueprint".





    • No labels