Use Case Overview & Description

This use case intends to demonstrate the modeling, orchestration, assurance and optimization of end-to-end network slices, including RAN, Transport and Core slice sub-nets. This use case shall support different deployment scenarios of the Slice Management & Orchestration functions through a modular architecture and standards-based interfaces.

Use Case Key Information

Requirements ProposalThis is a link to the requirements proposal made on the Requirements Sub-committeeE2E_Network_Slicing_R9_Requirements_20200329_v1.0.pptx
Architecture S/C infoInformation on the Architecture sub-committee presentation

ONAPARC-703 - Getting issue details... STATUS

Presentation: E2E_Network_Slicing_ArchCom_Review_v1.0.pptx

Prior Project "Base" WikiLink to the Honolulu release page for this use case
Requirements Jira (REQ-###) TicketLink to the REQ Jira ticket for this use case

REQ-721 - Getting issue details... STATUS

Key Use Case Leads & Contacts
Meetings Register & RecordingsLink to Use Case Team meetings


Executive Summary: 5G Network Slicing is one of the key features of 5G. The essence of Network Slicing is in sharing network resources (PNFs, VNFs, CNFs) while satisfying widely varying and sometimes seemingly contradictory requirements to different customers in an optimal manner. Same network is expected to provide different Quality of Experience to different consumers, use case categories and industry verticals including factory automation, connected home, autonomous vehicles, smart cities, remote healthcare, in-stadium experience and rural broadband. An End-to-End Network Slice consists of RAN, Transport and Core network slice sub-nets. This Use Case intends to demonstrate the modeling, orchestration and assurance of a simple network slice (e.g. eMBB). While 3GPP standards are evolving and 5G RAN and core are being realized, this Use Case will start with realizing an E2E Network Slice with a simple example of a 5G RAN, Core and Transport Network Slice sub-nets. It will also align with relevant standard bodies (e.g., 3GPP, ETSI, TM Forum) as well as other open initiatives such as O-RAN where relevant, both interfaces as well as the functional aspects.

Business Impact: Network Slicing is a feature that almost every service provider will leverage. It allows a service provider to improve their network efficiency by maximizing the network throughput more tailored to each user's use of the network. It is seen as an imperative for efficient and optimal use of their network. This will be particularly relevant as 5G is expected to have upwards of 10,000x the traffic load over 4G and 20GB peak data rates.

Business Markets: Network Slicing, for this use case, is specifically aimed at a 5G access, core and transport. In the future, this might be extended to other domains or applications such as fixed-wireless convergence, Wi-Fi access, all aspects of transport including fronthaul, or unified network management orchestration. Network Slicing functionality is what almost every wireless service provider will inevitably find valuable. The concepts and modeling work being done for Network Slicing will find applications in other areas as well. (Industries) Some applications and industries such as smart cities, remote maintenance, video streaming vs life-saving first-responder type applications will demand different requirements from Network slicing. (Markets/Regions) There are no regional specific aspects to Network Slicing.

Funding/Financial Impacts: Network slicing engenders the optimal use of resources for a Network. Thus, this represents OPEX savings for a service provider.

Organization Mgmt, Sales Strategies: There is no additional organizational management or sales strategies for this use case outside of a service providers "normal" ONAP deployment and its attendant organizational resources from a service provider.

Development Status

PROJECTPTLUser Story / EpicRequirement

No impact

No impact

No impact

No impact

CCSDK-3297 - Getting issue details... STATUS

Interface to CPS, RAN configuration & A1 interface

DCAEGEN2-2771 - Getting issue details... STATUS

Enhancements in Slice Analysis MS, and KPI Computation MS (Stretch goal)
No impact
External API
No impact
No impact
No impact, CPS related modeling aspects will be covered by CPS project

Multi-VIM /


No impact

OPTFRA-954 - Getting issue details... STATUS

No impact
No impact
No impact
No impact
No impact
SO SO-3649 - Getting issue details... STATUS Minor enhancements, some major enhancements are stretch goals
No impact
No impact
No impact
No impact
No impact
Models, and interface to store/retrieve use case related data

List of PTLs:Approved Projects

*Each Requirement should be tracked by its own User Story in JIRA 


Use cases define how different users interact with a system under design.  Each use case represents an action that may be performed by a user (defined in UML as an Actor with a user persona).

Use Case Diagram Example.png

Use Case Functional Definitions

Use Case Title

Title of the Use Case

Actors (and System Components)

The list of Actors and System Components that participate in the Use Case


Short overview of the Use Case

Points of Contact

Authors and maintainers of the Use Case.

Use Case Lead, Key Use Case members and code contributors.


A list of conditions that are assumed to be true before the Use Case is invoked

Includes description of Information Consumed

Triggers / Begins when

Describes the trigger for beginning the Use Case

Steps / Flows (success)

Describes the sequence of steps and interactions that occur during the Use Case (may include: description, data exchanges, functionality, state changes)

Interaction diagrams may be included or referenced


The expected results of the execution of the Use Case

Includes description of Information Produced

Alternate / Exception Paths

Description of any exceptions or special process that could occur during Use Case

Related Use Cases

List of the Use Cases referenced by this Use Case


Describes any assumptions that are made for this use case

Tools / References / Artifacts

List of any tools or reference material associated with this Use Case as well as any JIRA trace-ability.

List of any associated diagrams or modelling artifacts associated with the Use Case


Current Status

  1. Testing Blockers

  2. High visibility bugs
  3. Other issues for testing that should be seen at a summary level
  4. Where possible, always include JIRA links

End to End flow to be Tested

**This should be a summary level Sequence diagram done in Gliffy** 

Use Case Flow

Test Cases and Status

1There should be a test case for each item in the sequence diagram


2create additional requirements as needed for each discreet step


3Test cases should cover entire Use Case


Supporting Files

Mar 29, 2021Presentation given to Requirements Sub-Committee
  • No labels